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Abstract—Logitech made the following statement in 2009: “Since the displacements of a mouse would not give any useful information

to a hacker, the mouse reports are not encrypted.” In this paper, we prove the exact opposite is true—i.e., it is indeed possible to leak

sensitive information such as passwords through the displacements of a Bluetooth mouse. Our results can be easily extended to other

wireless mice using different radio links. We begin by presenting multiple ways to sniff unencrypted Bluetooth packets containing raw

mouse movement data. We then show that such data may reveal text-based passwords entered by clicking on software keyboards. We

propose two attacks, the prediction attack and replay attack, which can reconstruct the on-screen cursor trajectories from sniffed

mouse movement data. Two inference strategies are used to discover passwords from cursor trajectories. We conducted a holistic

study over all popular operating systems and analyzed how mouse acceleration algorithms and packet losses may affect the

reconstruction results. Our real-world experiments demonstrate the severity of privacy leakage from unencrypted Bluetooth mice. We

also discuss countermeasures to prevent privacy leakage from wireless mice. To the best of our knowledge, our work is the first to

demonstrate privacy leakage from raw mouse data.

Index Terms—Mouse, trajectory, password, sniffing, privacy, security
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1 INTRODUCTION

L OGITECH made the following statement in a white
paper published on March 2, 2009 [1]: “Since the

displacements of a mouse would not give any useful infor-
mation to a hacker, the mouse reports are not encrypted.”
Wireless mice may use a 27 MHz, a Proprietary 2.4 GHz, or
a Bluetooth 2.4 GHz radio link. From our interview with
major brand-name manufacturers including Logitech,
Microsoft, Apple, and Lenovo and our literature study, no
wireless mouse encrypts its communications [35], [36]. This
practice is also reflected in the design of mouse communica-
tion protocols. The Bluetooth human interface device (HID)
profile [8] requires authentication and encryption support
for keyboards and other HIDs such as fingerprint scanners,
which transmit identification or biometric information [8],

[26], [37]. Nonetheless, it does not mandate these security
mechanisms for mice.

In this paper, we show mouse movement data leaks
extremely sensitive information. The timings and
positions of mouse movements are often used as an
entropy source for random number and secret generation.
Leaked mouse movement data could reduce the entropy
of seeding for such random number generation. From a
reconstructed mouse trajectory on screen, an attacker
may build a user’s computer usage profile, identify appli-
cations, or even obtain user passwords. This problem is
particularly serious given the conventional belief that
mouse traffic can be unencrypted, lending users a false
sense of security.

In this paper, we focus on privacy leakage from
Bluetooth mice and summarize the results of our research
for over a year on addressing various challenges related to
the problem. Note that our results can be easily extended to
mice using other radio links [35], [36] as well. One question
often raised when attacking Bluetooth devices is the attack
distance. Although Bluetooth is designed as a short-range
radio technology, it has been shown that long distance
attacks against Bluetooth can be performed from over one
mile away [11], [25].

Various off-the-shelf tools are available to sniff Bluetooth
mouse communications. In particular, a universal software
radio peripheral 2 (USRP2) device [17], a software-defined
radio device, can be tuned to any Bluetooth channel with a
2:48 GHz daughterboard. To sniff all Bluetooth channels,
four USRP2s are needed. Tools such as Ubertooths [32],
[38], [39] can be used to determine the MAC address of
undiscoverable devices. This in turn can be fed into an
FTS4BT [3], a commercial product, which is able to
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synchronize with victim Bluetooth devices. An FTS4BT is
able to follow Bluetooth frequency hopping sequences,
thereby sniffing an entire communication session.

Our major contributions in the paper can be summa-
rized as follows. First, we examine mouse data semantics,
investigate how mouse events are processed in an operat-
ing system, and propose a prediction attack to reconstruct
the mouse on-screen cursor trajectory. The main chal-
lenge for designing the prediction attack is on the proper
understanding of the impact of (i) mouse acceleration
algorithms, (ii) packet timing, and (iii) impact of packet
losses on the prediction accuracy of the cursor trajectory.
To address these challenges, we derive the upper and
lower bounds of the complex mouse acceleration for
studying reconstruction errors.

Second, we are able to infer critical information from the
reconstructed cursor trajectory. Various systems, including
Windows, Linux, Mac, and applications [4], [9], [22] provide
software keyboards as an alternate input method. Users
may click a software keyboard and input their credentials.
We use the attack against the software-keyboard-based
authentication scheme to demonstrate the severity of wire-
less mouse privacy leakage. We develop two approaches to
map a clicking topology to a password sequence. With the
basic inferring approach, all candidate passwords are
enumerated from a clicking topology. With the enhanced
inferring approach, the statistical information of a human
clicking on the region of a key is used to reduce the number
of candidate passwords. Our experiments on Fedora 13 and
OpenSUSE 11.1 show that the basic inferring approach has
a success rate of more than 98 percent when recovering
passwords, while the (much more efficient) enhanced infer-
ring approach has a success rate of more than 95 percent.

Third, given that mouse acceleration algorithms are often
proprietary and cannot always be easily reverse engineered,
we propose a replay attack for reconstructing the on-screen
cursor trajectory if the acceleration algorithm is unknown.
In the replay attack, sniffed raw data is replayed on a com-
puter installed with the same operating system as the one
on the victim computer. With this approach, we can derive
the cursor trajectory and apply the basic and enhanced
inferring approaches to derive the password. Our real-
world experiments show that the success rate of the replay
attack on Fedora 13, Windows 7, and Mac OSX 10.6.5
achieves 69, 100, and 44 percent, respectively. Please refer to
Sections 5.5 for demo videos. The experiment results show
that the prediction attack outperforms the replay attack if
the acceleration algorithm is known.

The rest of this paper is organized as follows. In
Section 2, we discuss how to reconstruct the mouse cursor
trajectory. We analyze various factors that affect the accu-
racy of trajectory reconstruction in Section 3. In Section 4,
we evaluate the accuracy of inferring passwords from the
sniffed Bluetooth mouse movements using the software
keyboard attack as an example. In Section 6, we briefly
introduce the most relevant related work. Finally, we con-
clude this paper in Section 7. Potential countermeasures
to the proposed attacks are given in Appendix D in
the supplementary document, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/SC.2015.2413410.

2 RECONSTRUCTION OF MOUSE CURSOR

TRAJECTORY

In this section, we first investigate raw Bluetooth mouse
data semantics and then review various mouse cursor accel-
eration algorithms used in modern operating systems.
Finally, we introduce our prediction and replay attacks for
reconstructing an on-screen cursor trajectory. For an over-
view of Bluetooth and a discussion on how to sniff Blue-
tooth traffic, please refer to Appendix A, available in the
online supplemental material. Please refer to the supple-
mentary document for all appendices, available online.

2.1 Raw Bluetooth Mouse Data

Although we use a Logitech MX 5500 Bluetooth Mouse as
an example in most cases, we actually investigated many
other Bluetooth mice and found mice under the same brand
share the same semantics. These semantics have been
understood through reverse engineering, HCI profile speci-
fications, and related work [16].

For comparison, we briefly discuss the Microsoft Blue-
tooth Mouse 5000, which has a simple raw packet payload
format. The following is an example of its payload: {A1 11
00 01 FE 00 00}. The fields in bold provide the X and Y
movement, respectively. This data is expressed in two’s
complement form. Hence, the corresponding movement in
this example will be 1 and �2, i.e., a unit movement to the
right and two units in the upward direction.

An example of a Logitech MX 5500 mouse raw packet
payload is listed as follows: {A1 02 00 F3 FF FF 00 00 00}.
The three fields in bold are used to compute mouse move-
ment. The following rules are applied to obtain the move-
ment: Let the three fields be XO (F3 in the example above),
YO;1 (FF) and YO;2 (FF), respectively. In this case, the recon-
struction of mouse movements is more complicated than
for the Microsoft Bluetooth Mouse 5000. Specifically, the
hexadecimal values A; . . . ; F do not necessarily refer to the
decimal 10; . . . ; 15. Whenever A - F does not represent 10-15,
we refer to the hash table in Algorithm 1, which calculates
the raw mouse movement for the Logitech mouse. From
Algorithm 1, we can see that F3 on X equals to�(16�3) ¼
�13 and FF on Y equals to�(16 � 15) ¼ �1.

Algorithm 1. Raw Mouse Movement Mapping Algo-
rithm for Logitech Mouse

Require:HASH ¼ ( F ! 16, E ! 32, D! 48, C! 64, B ! 80, A
! 96);
1: if (XO > ¼ 127 in decimal) then #Left movement
2: X ¼HASH[first digit ofXO] - second digit ofXO;
3: else #right movement
4: X ¼XO;
5: end if
6: if (first digit of YO;2 ¼¼ F) then #Up movement
7: Y ¼HASH[second digit of YO;2] - first digit of YO;1;
8: else #Down movement
9: if (YO;2 ¼¼ 00) then
10: Y ¼ first digit of YO;1;
11: else
12: Y ¼ result of concatenating second digit of YO;2 with

first digit of YO;1;
13: end if
14: end if
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The raw mouse movement in the raw packet does not
actually represent the on-screen cursor movement because
the operation system handles such mapping using an accel-
eration algorithm. Fig. 1 shows the Linux input driver stack
where Xserver conducts the mapping from the raw mouse
movement to the on-screen cursor coordinate. In Linux,
each hardware component is treated as a special file (i.e.,
device file). The device file allows user-space applications to
interact with the device driver through standard input/out-
put system calls. In the kernel space, the mousedev (PS2-
emulator) driver creates these device files whereas the evdev
generic input event driver provides APIs for user-space
applications. In the user space, Xserver enforces mouse-cur-
sor acceleration by artificially increasing the cursor speed
based on how fast a user moves the mouse. For example,
consider a raw mouse movement of Dx and Dy pixels on X
and Y , respectively. An extremely simple acceleration algo-
rithm may increase the amount of cursor movement by
twice the amount (i.e., ð2Dx; 2DyÞ).

To predict cursor trajectory from sniffed Bluetooth
mouse packets, we need to have a precise understanding of
mouse acceleration implementation. Mouse acceleration is a
feature available in most operating systems today. This fea-
ture defines the mapping between the on-screen cursor
motion and the physical movement of a mouse. It provides
users with the ability to effectively navigate screens with a
high resolution and a minimal physical movement of a
mouse. Listed below, we derive the Linux mouse accelera-
tion from its source code and examine it in detail as an
example. Because we cannot obtain the source code of the
Windows and Mac mouse acceleration algorithms, we pro-
pose the replay attack to reconstruct the on-screen cursor
trajectory with no need of knowing which mouse accelera-
tion algorithm is used.

2.2 Linux Mouse Acceleration

An OS may use an acceleration algorithm to calculate cursor
position based on raw mouse movement data. Based on
whether packet arrival time is considered in computing the
cursor movements on screen, we classify mouse acceleration
algorithms into two categories: (i) lightweight acceleration
algorithm and (ii) complex acceleration algorithm. The Light-
weight acceleration algorithm does not consider the packet
arrival time and is used in Linux-based OS with Xserver ver-
sions before 1.5. The Complex Acceleration Algorithm takes the
packet arrival time into account and is adopted in Linux-
based OS with Xserver versions after 1.5 [6], current

Windows OSs, and Mac OS X. We now explain these two
types of algorithms in detail.

2.2.1 Lightweight Acceleration Algorithm

Algorithm 2 illustrates the Linux lightweight acceleration
algorithm: If a mouse is physically moved more than T
units, the algorithm amplifies the movement byM times the
current amount along theX and Y axes, respectively, where
T and M are pre-determined parameters. It is important to
note that T is computed as the Manhattan distance (instead
of the euclidean distance) of the reported mouse movements.
For example, if a mouse reports a movement of ð3; 4Þ, the
corresponding cursor movement will be ð6; 8Þ when T ¼ 6
andM ¼ 2 on theX and Y axes, respectively.

Algorithm 2. Lightweight Acceleration Algorithm

Require: Raw mouse movement (Dx, Dy); Threshold T ; Accel-
eration FactorM
1: if (jDxj þ jDyj � T ) then
2: cursor movement ¼ (Dx, Dy);
3: else
4: cursor movement ¼ (M � Dx,M � Dy);
5: end if

2.2.2 Complex Acceleration Algorithm

We explain the complex acceleration algorithm based on
Linux OSs with Xserver versions after 1.5. When a new
mouse event arrives, a mouse event is created for the mouse
packet. Next, the system first computes the velocity of the
mouse movement and then computes the acceleration based
on the derived velocity. Based on the raw movement infor-
mation in the mouse packet and the derived acceleration,
the system determines the cursor movement on screen.

To determine the mouse velocity, we first compute the
distance between two mouse events. Denote the sequence
of raw mouse events as Z1; Z2; . . . ; Zn. A mouse event Zi

includes three elements relative to mouse motion: Dxi, Dyi,
and timestamp ti. Denote Dðk; nÞ as the distance between
mouse events Zk and Zn, where 1 � k < n

Dðk; nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼k

Dxi

 !2

þ
Xn
i¼k

Dyi

 !2
vuut : (1)

Based on the distance Dðk; nÞ, we can derive the mouse
velocity V ðk; nÞ between Zk and Zn as

V ðk; nÞ ¼ Dðk; nÞ
tn � tk

� a� b; (2)

where a and b are velocity scaling and velocity softening
parameters with default values of 10 and 1, respectively.
The Linux command xinput can be used to return the value
of these parameters.

To compute the current mouse velocity Vn (note that Vn is
not the same as the velocity V ðk; nÞ between Zk and Zn), the
system uses a mouse event queue to buffer l mouse events
and calculates Vn based on the past mouse events in the
queue. Fig. 2 shows a mouse event queue with a length of l,
having a default value of 16. Denote Zn as a new mouse

Fig. 1. Linux input device driver stack.
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event arriving at the queue. We now calculate V ðp; nÞ,
V ðpþ 1; nÞ, . . ., V ðn� 1; nÞ, and the mouse velocity between
mouse event Zn and those in the queue based on Equa-
tion (2), where n� lþ 1 � p � n� 1, tn � tp�1 > 300ms, and
tn � tp < 300ms. It can be observed that mouse events that have
occurred 300 ms before the current event Zn do not participate in
the calculation of mouse velocity Vn for Zn. Vn is derived by the
following process: If there is only one mouse event before
the mouse event Zn, the current mouse velocity
Vn ¼ V ðn� 1; nÞ. If there are two mouse events before Zn,
then Vn ¼ V ðn� 2; nÞ. If there are more than two past
mouse events, V ðj; nÞ can be selected as the current mouse
velocity Vn by solving the following problem:

Maximize : Distance Dðj; nÞ;
Subject to : V ðn� 2; nÞ � V ðj; nÞj j � 1 or;

V ðn� 2; nÞ � V ðj; nÞj j
V ðn� 2; nÞ þ V ðj; nÞ < 0:2;

(3)

where p < j � n� 1.
When velocities are derived, the acceleration A can be

derived as follows:

A ¼
SðVnÞ þ SðVn�1Þ þ 4 � S VnþVn�1

2

� �

6
; (4)

where Sð:Þ is a velocity smoothing function. Because
SðVnÞ � 1, we have A � 1. Please refer to Appendix B, avail-
able in the online supplemental material, for an explanation
of Sð:Þ.

Once A is derived, the cursor coordinate ðX;Y Þ on screen
can be derived as follows:

X ¼ X þA� Dxn;

Y ¼ Y þA� Dyn; :
(5)

where ðDxn;DynÞ is the raw mouse movement. If A ¼ 1, the
system will not accelerate the mouse speed; otherwise,
acceleration is in effect. Note that A can be a decimal num-
ber in which Equation (5) will produce a cursor position
which is not an integer. The Linux complex acceleration
algorithm takes effort in rounding the coordinate and main-
taining the residues. Please refer to Appendix C, available
in the online supplemental material, for details of how this
approximation is accomplished.

2.3 Reconstructing Cursor Trajectory

Given raw Bluetooth mouse movement data, if an attacker
knows the mouse acceleration algorithm used in an operat-
ing system, an attacker can predict the cursor trajectory on a
victim system. This is denoted as prediction attack and our
prediction algorithm comes straight from the Linux driver
code. However, the attacker may not know the mouse accel-
eration algorithm beforehand, particularly if the operating
system is proprietary. It is not always trivial to reverse

engineer proprietary operating systems and derive the hid-
den mouse acceleration algorithms.

We propose the replay attack if the mouse acceleration
algorithm is unknown. A replay attack has two phases. In
the first phase, an attacker sniffs raw Bluetooth mouse data
between a Bluetooth mouse and a victim computer using
the sniffer FTS4BT. In the second phase, to derive the on-
screen cursor trajectory, the attacker uses a computer as the
attack computer, as shown in Fig. 3, and replays the sniffed
mouse data to an impersonating computer, which is
installed with the same operating system as the victim com-
puter. The cursor trajectory on the impersonating computer
is the approximate on-screen cursor trajectory on the victim
computer.

The benefit of our replay attack is that we do not need to
understand the complex acceleration algorithm on the vic-
tim computer as long as we can discover the operating sys-
tem running on the victim computer. We can know the type
of operating system on the victim computer by using vari-
ous scanning tools such as nmap and Nessus.

3 ANALYSIS

In this section, we discuss two main factors that affect the
accuracy of reconstructing the mouse cursor trajectory from
sniffed raw mouse data: (i) Bluetooth packet loss during
sniffing and (ii) the randomness of packet arrival time..

3.1 Impact of Bluetooth Packet Loss

A Bluetooth sniffer may miss packets due to various factors
of fading or interference such as that from wireless LANs.
We designed the following experiments with an FTS4BT
device to measure how many pixels may be missing from
the reconstructed onscreen cursor trajectory if a Bluetooth
packet is lost. Suppose that a user uses a computer with a
Bluetooth mouse (Logitech MX 5500) to surf the Internet
and play games. At the same time, we use the FTS4BT
device to sniff the communications between the mouse and
computer for several 40 minute time periods. Each experi-
ment run generates tens of thousands of packets. For exam-
ple, there are more than 39000 raw mouse packets in one
experiment run.

For the lightweight acceleration algorithm, our empirical
results in Fig. 4 illustrate that the mean value of absolute
raw mouse movement distance incurred by a Bluetooth
mouse packet is 4:21 pixels. This corresponds to a confi-
dence interval of ½4:16; 4:26� with 95 percent confidence.
From Fig. 5, which is derived from Fig. 4 using Algorithm 2,
the mean value of absolute on-screen cursor movement dis-
tance is 6:76 pixels. This corresponds to a confidence inter-
val of ½6:64; 6:86� with 95 percent confidence. Hence, under
the lightweight acceleration algorithm, we expect an error
of around six pixels in the predicted cursor trajectory when

Fig. 2. Mouse event queue.

Fig. 3. Replay attack illustration.
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we are missing one Bluetooth packet. Lost packets also neg-
atively impact the predicted mouse cursor trajectory for the
complex acceleration algorithm. The impact is more compli-
cated as the complex acceleration algorithm considers the
timing of arriving packets to compute the mouse accelera-
tion. The loss of a packet affects the computation of mouse
movement speed and acceleration. We discuss the impact of
timing in the following subsection.

3.2 Impact of Packet Arriving Time

The Bluetooth packet inter-arrival interval as shown in
Fig. 6 has no effect on an operating system that uses the
lightweight acceleration algorithm (Algorithm 2) whereas it
affects an operating system using the complex acceleration
algorithm. According to the analysis in Section 2.2.2, the
estimated current velocity depends on the inter-packet
interval in Equation (2) and the historic mouse events in the
mouse event queue. The current and previous estimated
mouse velocities could affect the acceleration in terms of
Equation (4). Eventually, the acceleration determines the
ultimate on-screen mouse movement based on Equation (5).
Hence, the Bluetooth packet timing and inter-packet inter-
val play important roles in estimating the ultimate mouse
movement.

In the prediction attack, packet timestamps recorded
during sniffing are not those seen by the victim computer as
an event scheduling algorithm adds randomness to time-
stamps when packets get into the operating system. In the
replay attack, we use a high resolution timer to relay the
sniffed packets. Similarly, the event scheduling algorithm of

the impersonating computer adds randomness to replayed
packet timings. However, in the replay attack, since a packet
needs to travel through the network stack of the attack com-
puter and the air to arrive at the impersonating computer,
more randomness to packet timings may be introduced.
This is why the performance of the replay attack is inferior
when compared to the prediction attack in our experiments.
Hence, in both attacks, we cannot obtain the same packet
timestamps seen by the victim computer. The Bluetooth
packet arrival time is a factor which could affect the accu-
racy of reconstructing the mouse cursor trajectory from
sniffed raw mouse data.

3.2.1 Bound of Complex Acceleration Algorithm

We now derive bounds for acceleration using the Linux
complex acceleration algorithm in terms of the mouse veloc-
ity. The goal is to understand how the error of predicted
mouse velocity, which is caused by packet timing, affects
the acceleration and reconstructed cursor trajectory. Con-
sider the system default mouse settings with the simple
smooth profile, as discussed in Section 2.2.2 (i.e., the acceler-
ation threshold h ¼ 4 and the acceleration factor a ¼ 2). Let
the current and previous estimated velocity be Vn and Vn�1,
respectively. The bound of the smoothed mouse velocity
SðVnÞ is described in the following. A detailed proof can be
found in Appendix C, available in the online supplemental
material

SðVnÞ ¼ 1; 0 < Vn � 4;
1:5 < SðVnÞ < 2; 4 < Vn < 8;
SðVnÞ ¼ 2; Vn � 8:

8<
: (6)

Based on the bound of SðVnÞ, we derive the bound of the
mouse acceleration A as follows:

A ¼ 1; 0 < Vn � 4; 0 < Vn�1 � 4;
1:083 < A < 1:167; ð0 < Vn � 4; 4 < Vn�1 < 8; or

4 < Vn < 8; 0 < Vn�1 � 4Þ; 2 < VnþVn�1
2 < 4;

1:417 < A < 1:703; ð0 < Vn � 4; 4 < Vn�1 < 8; or
4 < Vn < 8; 0 < Vn�1 � 4Þ; 4 < VnþVn�1

2 < 6;
1:5 < A < 2; 4 < Vn < 8; 4 < Vn�1 < 8;
1:583 < A < 2; ðVn � 8; 4 < Vn�1 < 8Þ; or

ð4 < Vn < 8; Vn�1 � 8Þ;
A ¼ 2; Vn � 8; Vn�1 � 8;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

where A has non-continuous subdomains.Fig. 5. Histogram of cursor moving distance.

Fig. 6. Histogram of bluetooth mouse inter-packet interval.Fig. 4. Histogram of raw mouse moving distance.
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The acceleration bound shown in Equation (7) implies
that the packet arrival time may affect the acceleration and
the cursor trajectory, according to the cursor coordinate
derived by Equation (5). Recall that Vn is V ðk; nÞ when
Equation (3) is satisfied

V ðk; nÞ ¼ Dðk; nÞ
tn � tk

� a� b:

When the packet arrival time has a change Dt, the velocity
changes to V 0ðk; nÞ:

V 0ðk; nÞ ¼ Dðk; nÞ
tn � tk þ Dt

� a� b: (8)

Hence, Vn will also change with packet arrival times. Specif-
ically, a small change of timing may switch Vn and Vn�1 in
Equation (7) from one subdomain such as ð0; 4� to another
subdomain such as ð4; 8�. For example, if Dt shifts
0 < Vn � 4 and 0 < Vn�1 � 4 to 4 < Vn < 8 and 4 < Vn�1 < 8,
respectively, the acceleration will be changed from A ¼ 1 to
1:5 < A < 2 according to Equations (7). When the coordi-
nates are updated based on Equation (5), the cursor trajec-
tory will be changed.

3.2.2 Impact from Packet Arriving Time

Our experiments show the error of cursor trajectory recon-
struction caused by the difference of arrival times of Blue-
tooth packets as seen by the target operation system and the
sniffer. We use the sniffer FTS4BT to capture Bluetooth traf-
fic between a Bluetooth mouse (Logitech MX 5500) and a
Fedora core 13 computer, which uses the complex accelera-
tion algorithm. Astute readers may question: Since the
impact of packet arrival time is being evaluated, what if
there is a packet loss during the sniffing phase by the
FTS4BT device? Actually, to ensure there is no packet loss,
we use a FTS4BT and HCI sniffing software called
“hcidump” to sniff packets simultaneously. FTS4BT and
hcidump capture the same Bluetooth traffic between the
Computer A and the Bluetooth mouse. Note that hcidump
runs on Computer A and is able to sniff all packets without
loss. We compare the data set from FTS4BT with the data
set from hcidump to make sure there is no packet loss in the
data set from FTS4BT.

Figs. 7 and 8 use the sniffed data set from FTS4BT and
show that in the prediction attack, because the predicted
acceleration deviates from the original one, the predicted

cursor trajectory does not exactly overlap with the original
trajectory. In our experiments, the original acceleration val-
ues and cursor trajectory are obtained from logs from a
revised Linux kernel.

4 INFERRING PASSWORDS FROM RECONSTRUCTED

CURSOR TOPOLOGY

In this section, we investigate how the reconstructed cursor
trajectory enables an attacker to compromise the sensitive
information of a user. In particular, to quantify the results,
we consider the scenario of inferring character sequences
from a reconstructed cursor clicking topology when a user
is clicking an on-screen soft keyboard.

4.1 Inferring Character Sequence

A cursor clicking topology is formed by connecting all
points clicked in the reconstructed trajectory. Recall that the
reconstruction can be conducted by either the prediction or
the replay attack from raw mouse movement data.

We now introduce the basic approach to infer a character
sequence from a cursor clicking topology. The basic
approach directly maps the clicking topology to an on-
screen keyboard. Assuming that we have derived the raw
mouse data that contains a set of clicks on a soft keyboard,
we can derive the clicking topology. However, we do not
know the exact starting point of the trajectory and therefore
cannot determine which keys have been clicked. To derive
all candidates (i.e., all possible character sequences corre-
sponding to the trajectory), we move the cursor clicking
topology from the top left to the bottom right in the area of
the on-screen keyboard. When the topology moves, the
clicking points may produce a character sequence. We
record all different character sequences. Consequently, a set
of character sequences based on a cursor clicking topology
can be derived. We consider the set of character sequences
as candidate character sequences. The true character sequence
must be one of candidates if there is no packet loss and the
packet timing is correct. The challenge of this approach is
that it may generate a large number of candidates.

To reduce the number of candidate character sequences,
we propose an enhanced inferring approach which uses the
statistical information of the area where the user clicks
the on-screen keyboard. Intuitively, when hitting a key,
the user tends to click in the center rather than the edge of
the area belonging to the key. We define this area as the
hot area for the key. Because the size of the keys on a soft
keyboard is different, in order to derive a normalized hot
area, we recruit a group of people and obtain clicking

Fig. 7. Predicted acceleration.

Fig. 8. Predicted cursor trajectory.
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positions of random characters on the same on-screen key-
board and then normalize the rectangular area of a key to
a 1� 1 square area. The hot area is the area which contains
99 percent of the clicked positions. After obtaining the hot
area, we map a cursor clicking topology to an on-screen
keyboard from the top left to the bottom right. A character
sequence will be considered as a candidate sequence only
if all the characters’ clicking positions are in the hot area.
With the hot area, the number of candidate character
sequences will sharply decrease. The benefit of the
enhanced inferring approach is that the uncertainty of the
clicked character sequences is significantly reduced.

4.2 Inferring Passwords

To evaluate our method of inferring a character sequence
from the reconstructed cursor topology, we conducted
extensive experiments. Unless explicitly noted, all of our
analysis and figures in the following are derived from the
sniffed data by an FTS4BT.

4.2.1 Why the Password Attack is Dangerous

Various systems and applications provide soft keyboards as
an alternative input method. Users may “click” these soft
keyboards and input sensitive information, which is under
the threat of attacks investigated in this paper. We classify
these soft keyboards into two categories: (i) the classical soft
keyboard and (ii) the randomized soft keyboard. The classi-
cal soft keyboard emulates the physical QWERTY keyboard
and the randomized soft keyboard has a randomized key
layout. The randomization is for defending against other
attacks such as the keystroke logging attack, which is differ-
ent from the attacks investigated in this paper. A random-
ized keyboard could resist our proposed attack to some
extent depending on how the keys are randomized. Our
investigation suggests that a purely randomized key layout
should be necessary for inputting sensitive information.

To demonstrate that many systems are under the threat
of attacks investigated in this paper, we now give a brief
summary of systems and applications and the class of soft
keyboards. The classic soft keyboard has been widely used
by operating systems, including Linux, Windows, Mac.,
and others. In particular, the known anti-virus software
Kaspersky [4] believes that entering confidential data on a
virtual keyboard is secure and makes the following state-
ment: “When you enter your confidential data (for example,
your login and password in an E-Store) using your key-
board, there is a risk that this personal information is inter-
cepted using the hardware keyboard interceptors or
keyloggers, which are programs that register keystrokes.
Then, this information will be transferred to hackers/cyber
criminals through the Internet. Kaspersky Anti-Virus
includes a Virtual keyboard that allows users to avoid the
interception of sensitive data.” Online banking login sys-
tems including HSBC [22] and Westpac [9] use the classical
soft keyboard. In contrast, the randomized soft keyboard is
used to a very limited extent. Here are two examples: the
online login system for State Bank of Travancore in India [5]
and an online chat system QQ [7].

Hence, the attack of reconstructing a password clicked on
a soft keyboard is truly realistic in various scenarios. The
fact that Bluetooth mice leak passwords is significant. To

the best of our knowledge, we believe that the aforesaid hid-
den vulnerability of Bluetooth mice was largely ignored.
Hence, we intend to sound a warning bell to the industry
that unencrypted communications over Bluetooth mice may
be detrimental to user online privacy and security. In
Appendix D of the supplementary document, available
online, we discuss the encryption of Bluetooth mice and a
purely randomized soft keyboard as countermeasures to
the investigated attacks.

4.2.2 Performance Metrics

We consider two metrics for evaluating how well we can
infer passwords based on the reconstructed clicking
topology. One is the success rate, which is defined as the
percentage of correctly detected passwords out of all eval-
uated passwords. Therefore, the success rate is per-pass-
word. A password is deemed “correctly detected” if it is
in the set of candidate passwords. Recall that one topol-
ogy may generate a number of candidate passwords. The
second metric, obscurity degree, measures the average
number of passwords corresponding to a single clicking
topology. Obviously, an attacker prefers a small number
of passwords from a given clicking topology. Assume
that each candidate password has an equal probability to
be the real password. Hence, if the cardinality of a set is
mi, its entropy is log2 mi. The average entropy for all the
clicking topologies is then defined as the obscurity degree
and is derived by

Obscurity degree ¼
Pn

i¼1 log2 mi

n
; (9)

where n is the number of clicking topologies. Note that the
obscurity degree is an information-theoretic metric and a
lower obscurity degree means fewer candidate passwords
per clicking topology that the attacker has to guess.

In the rest of this paper, we will present the experiment
results. For each derived success rate and obscurity degree,
we generated 100 random passwords each with a length of
eight characters (including uppercase letters, lowercase let-
ters, and numbers). Then, we used a Bluetooth mouse (Logi-
tech MX 5500) to click on a soft keyboard, xvkbd of size
449� 149 pixels (small-size soft keyboard), to input those
passwords on a computer installed with different operating
systems that use different mouse acceleration algorithms.
At the same time, the FTS4BT sniffer was used to sniff all
the Bluetooth traffic. To check whether our approach works
on soft keyboards with different sizes, we conducted a simi-
lar set of experiments on a large size soft keyboard, xvkbd
of size 896� 254 pixels.

As we know, operating systems usually allow users to
configure the mouse acceleration parameters. Our experi-
ments are based on the default setting, which is used by
most users. Even if a user changes the default setting, the
attack can be feasible. For example, the Windows 7 mouse
speed setting has only 11 possible levels. By applying our
attack over each possible level individually, we will still be
able to reconstruct the correct trajectory. Indeed, if the
mouse configuration changes, the attacker has to make
more attempts in order to successfully derive the password.
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5 EVALUATION OF INFERRING PASSWORDS

To evaluate how well we can infer passwords based on the
reconstructed clicking topology, we conducted extensive
experiments and attacks were successful on Linux,
Windows, and Mac OS X. Both prediction and the replay
attacks were deployed on Linux. Because we could not
obtain the mouse acceleration source code for Windows
and Mac OS X, the replay attack was mainly deployed on
these two operating systems.

5.1 Hot Area

To derive the normalized hot area, we generated 120 ran-
dom passwords each with a length of eight characters,
including uppercase letters, lowercase letters, and numbers.
Note that an uppercase letter corresponds to two clicks, Shift
+ the letter. Three persons were recruited and each of them
input 40 passwords by clicking on the same software key-
board. We obtained more than 1;000 clicking positions.
Fig. 9 shows the clicking positions on an on-screen keyboard
after applying the normalization method. Although the

sample size is small, our experimental results clearly dem-
onstrate the severity of the attack presented in this paper.

5.2 Success Rate without Packet Loss
in the Prediction Attack

This set of experiments was performed against one person
on OpenSUSE 11.1 using the lightweight mouse acceleration
algorithm. We evaluate both the basic and enhanced infer-
ence approaches for inferring a password on different-sized
soft keyboards. For both the small-sized and large-sized soft
keyboards, we achieve a success rate of 100 percent for the
basic inferring approach and 99 percent for the enhanced
inferring approach.

We now show that the enhanced inferring approach
can significantly reduce the number of candidate pass-
words for both the small-sized and large-sized soft key-
boards. Figs. 10 and 11 use the basic inferring approach
and show a histogram detailing the number of password
candidates for the small and large size soft keyboards,
respectively. Figs. 12 and 13 show a histogram detailing
the number of password candidates from mouse clicking
topologies for each of the two sized keyboards when the
enhanced inferring approach is used on the hot area. In
each of these four figures, the x-axis is the possible quan-
tity of candidate passwords generated by a reconstructed
trajectory. The y-axis is the frequency of such a quantity
(i.e., how many reconstructed trajectories generate such a
quantity of candidate passwords). From these figures, we
can observe that the enhanced inferring approach reduces
the number of candidate passwords for both small and
large size keyboards sharply. In particular, for the small
keyboard, the enhanced inferring method reduces the
number of candidate passwords from the range of
ð0; 425Þ to ð0; 22Þ. For the large size keyboard, the
enhanced inferring approach reduces the number of can-
didate passwords from the range of ð0; 400Þ to ð0; 15Þ.

From Figs. 10 and 11, we can derive the obscurity degree.
Table 1 compares the obscurity degree for the basic and

Fig. 9. Normalized clicking positions with hot area.

Fig. 10. Histogram of password candidates on small on-screen keyboard
by basic inferring.

Fig. 11. Histogram of password candidates on large on-screen keyboard
by basic inferring.

Fig. 12. Histogram of password candidates on small on-screen keyboard
by enhanced inferring.

Fig. 13. Histogram of password candidates on large on-screen keyboard
by enhanced inferring.
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enhanced inferring approaches in the scenario where the
lightweight acceleration algorithm is used. We can see that
the enhanced inferring approach sharply reduces the obscu-
rity of guessing a password. The basic inferring approach
has an obscurity degree of around 6 bits whereas the
enhanced inferring approach has an obscurity degree of
around 1 bit, corresponding to two passwords per clicking
topology, which the attacker has to guess.

We performed the prediction attack against another 10
persons on OpenSUSE 11.1 using the lightweight mouse
acceleration algorithm. Each person input 10 random pass-
words of eight characters long. The hot area in Fig. 9, which
is derived from clicking positions from three persons, is
used for the enhanced inferring approach in this set of
experiments. The observations are similar to those from
Figs. 9, 10, 11 and 12 when the attacks were performed
against one person. The attack success rate for both basic
inferring and enhanced inferring approaches is still 100 per-
cent. The enhanced inferring approach can also dramati-
cally reduce the number of candidate passwords. Therefore,
the attack strategies presented in this paper are generic. In
the rest of the paper, we use attack experiments against one
person to demonstrate the severity of the attack.

5.3 Success Rate with Packet Loss in the Prediction
Attack

Recall that during sniffing, Bluetooth packets may be
dropped due to fading and interference. To reduce the
packet loss rate, we use two FTS4BT dongles placed in
redundant mode to sniff the same Piconet. Table 2 lists the
packet loss rate in terms of distance between the sniffer and
the target. The experiments were conducted in a corridor of
a campus building. We can see that the sniffer has a loss
rate of only 1.4 percent at a distance of 10 meters. This
shows that the attack can be deployed stealthily from a rea-
sonably long distance. When the distance is more than
10 meters, the loss rate dramatically increases. For a com-
prehensive evaluation of Bluetooth packet loss caused by
various factors, please refer to related bibliography includ-
ing [19], [28].

We now use emulation to show the impact of packet loss
on the success rate of inferring passwords because it is not
easy to control the loss rate in real-world experiments. The
data we will use is from the large size on-screen keyboard on
OpenSUSE 11.1. For each loss rate, we first randomly discard
raw mouse packets from the original loss-less data set of the

FTS4BT device at the specified loss rate. For those packets
retained, we will form a new set of raw mouse packets. We
then apply either the basic inferring approach or the enhanced
inferring approach to the new set of raw mouse packets. In
thisway,we can derive the success rate given a specific packet
loss rate. Fig. 14 shows the success rate for the basic inferring
approach versus different packet loss rates. We observe that
when the packet loss rate is less than 2 percent, i.e., when the
distance is 10 meters or less, the basic inferring approach
achieves a very high success rate of around 80 percent.

Fig. 15 shows the success rate for the enhanced inferring
approach versus the packet loss rate. The confidence inter-
val for both figures is derived over 10 emulations. When the
packet loss rate is less than 1 percent, the enhanced inferring
approach achieves a success rate of near 80 percent. Com-
paring Fig. 14 with Fig. 15, we can observe that when the
packet loss rate is less than 1 percent, the success rate will
not sharply decrease for the basic nor the enhanced infer-
ring approaches. When the packet loss rate is more than
1 percent, the basic inferring approach achieves a much
higher success rate than the enhanced inferring approach.
Hence, the basic inferring approach is adopted when the
packet loss rate is more than 1 percent. Nonetheless, recall
that the basic inferring approach has a larger candidate set
and therefore a higher uncertainty of guessing the correct
password exists. Hence, if the packet loss rate is less than
1 percent, the enhanced inferring approach can be adopted
for lower uncertainty.

5.4 Success Rate with Complex Acceleration
in Prediction Attack

As we discussed in Section 3, the packet arrival timing
affects the attack accuracy when reconstructing the on
screen mouse cursor trajectory for operating systems using
the complex acceleration algorithm. We conducted exten-
sive real-world experiments on Fedora Core 13, which uses
the complex acceleration algorithm, to investigate how
packet timing affects inferring passwords. Note that the

TABLE 2
Packet Loss Rate v.s. Distance (Meter)

Distance 1 3 5 10 15 30
Loss rate 0 0 0.2% 1.4% 27.1% 97.8%

TABLE 1
Obscurity Degree for Basic and Enhanced Inferring

for Lightweight Acceleration

Small keyboard Large keyboard

Basic inferring 6.19 5.88
Enhanced inferring 1.70 1.11

Fig. 14. Success rate versus packet loss rate by the basic approach.

Fig. 15. Success rate versus packet loss rate by the enhanced approach.
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data for our investigation is from the FTS4BT sniffer. To
reduce the impact from timing, we should use the data
starting at the time when the first click for a password
occurs as this reduces the prediction error according to the
discussion in Section 3.

Table 3 compares the results of inferring passwords for
both the lightweight and complex acceleration algorithms.
We can see that passwords can be derived with a success
rate of more than 95 percent for the complex acceleration
algorithm. One reason for the high success rate is that the
mouse movement during password entries (clicking an on-
screen keyboard) is different from the mouse movement in
other conditions. Each character on the on-screen keyboard
corresponds to a small area. Users always take caution
when inputting passwords and will not move the mouse
too fast in an effort not to miss a key. This slow movement
reduces the impact of packet timing on mouse acceleration
and favors reconstructing a correct clicking topology. We
observed in the experiments for the large size keyboard
with the basic inferring approach that 98 percent of pass-
word clicking processes have a topology with a deviation in
the range [0, 25] pixels for both the X- and Y-axes. In only
one case, the deviation was 52 pixels in the X direction and
9 pixels in the Y direction. However, a large deviation does
not always lead to a failure of password inference as the
predicted clicking topology may fall within the characters’
areas on the soft keyboard. We have observed similar
results in our experiments on the small-sized keyboard.

5.5 Replay Attack

To evaluate the replay attack, we carried out experiments on
Fedora Core 13, Windows 7, and Mac OS X 10.6.5. We
implemented the raw mouse data replay program, i.e., fake
mouse, on a Linux computer installed with Ubuntu 8.04,
which could emulate various mouse brands. To guarantee
that the replayed packet timing is accurate, we used a high
resolution timer (nanosleep and real-time clock).

We now show the results of our replay attack and exam-
ine the impact of packet timing changes caused by the

replay attack. We first provide results for a victim computer
installed with Fedora Core 13. Figs. 16 and 17 show that the
acceleration and cursor trajectory are changed during recon-
struction in the replay attack. Because the acceleration value
in the replay attack deviates from the original one, the cur-
sor trajectory derived by the replay attack does not overlap
with the original trajectory.

Table 4 shows the success rate and obscurity degree for
the replay attack on a large-sized keyboard for 100 pass-
words. On Fedora 13, we can see that because of a greater
impact from replayed Bluetooth packet timing, the perfor-
mance of the replay attack is inferior when compared to the
prediction attack. Even though Bluetooth packet timing is
seriously distorted during the replay attack, a detection rate
of 69 percent is still achieved when the basic inferring
approach is used. The detection rate for the enhanced
inferring approach is 31 percent. Hence, the basic inferring
approach is recommended for the replay attack on a Linux
OS with an Xserver version after 1.5.

On Windows 7, we conducted the replay attack using the
default soft keyboard. To log the cursor clicking topology, we
installed RUI, a tool Recording User Input from interfaces for
use underWindows andMacOS X [23], on the impersonating
computer. Once a clicking topology is logged, either the basic
inferring approach or the enhanced inferring approach can be
used tomap the clicking topology to the soft keyboard. Aswe
can see from Table 4, the success rate of the basic inferring
approach achieves 100 percent whereas the success rate of the
enhanced inferring approach achieves 92 percent with an
obscurity degree of around only 2, corresponding to four
passwords on average that the attackermust choose to be suc-
cessful in recovering the password. This demonstrates that
the replay attack onWindows 7 is feasible and effective.

On Mac OSX 10.6.5, we conducted the replay attack using
the default soft keyboard. RUI is again used to log the cursor
clicking topology on the impersonating computer. As we
can see from Table 4, the success rate of the basic inferring
approach is 44 percent whereas the success rate of the
enhanced inferring approach is 14 percent. It seems that
Mac OSX adopts a more sensitive mouse acceleration

Fig. 16. Acceleration in replay attack.

TABLE 3
Password Reconstruction Success Rate for Lightweight and Complex Acceleration Algorithms

Basic Inferring Enhanced Inferring

Small keyboard Large keyboard Small keyboard Large keyboard

Lightweight acceleration 100% 100% 99% 99%
Complex acceleration 99% 98% 98% 95%

Fig. 17. Cursor trajectory in replay attack.
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algorithm and that the randomness introduced into the
packet timing by the replay attack brings more trajectory
deviation, leading to a low success rate. Based on our experi-
ments, Mac OSX seems less vulnerable to the replay attack.

Please see the footnotes for videos of successful replay
attacks on different target OSs: Fedora Core 13,1 Windows 7
default installation,2 and Mac OSX 10.6.5.3 These videos
show the replay attack process and do not include the sniff-
ing process. In each demonstration, two computers are
used. One emulates the Bluetooth mouse, denoted as “fake
mouse,” whereas the other computer is the “impersonating
computer,” installed with the same OS as the victim com-
puter. In the video, the fake mouse is a laptop installed with
Ubuntu 8.04 and the impersonating computer is either a
laptop or computer. The fake mouse replays sniffed data to
the impersonating computer. The sniffed data is derived by
the FTS4BT device.

At the beginning of each video, we begin with the mouse
device registration and replay programs on the fake mouse.
The impersonating computer then connects to the fakemouse.
After the Bluetooth connection is set up, the fake mouse will
replay the sniffed data packets according to their original
timestamps to the impersonating computer. For greater clar-
ity of demonstrating the attack impact, at the beginning of
each replay attack, wemove the cursor to the first character of
the password and show that the replay attack correctly
derives the positions of the rest of the password characters. In
the video, we can see that the cursor on the target computer
moves and clicks passwords automatically. Here, the word
“automatically” means the cursor on the target computer is
controlled by the fake mouse, rather than by a hand. As we
can see, the mouse movement trajectory of the victim and
clicking topology can be reconstructed from the cursor move-
ment observed on the impersonating computer.

6 RELATED WORK

Although there are various attacks against Bluetooth, our
work is the first on reconstructing the Bluetooth mouse tra-
jectory and deriving sensitive information from it such as
passwords. Bluetooth sniffing has been investigated in [2],
[32], [39], [40]. Existing attacks include [26], [37] on the pair-
ing procedure for deriving link keys and [14], [31] against
Bluetooth keyboards. For a comprehensive study of
Bluetooth security and related attacks, please refer to [21],
[30]. Please refer to [13] for the study of password strength.

Mouse movement can also be used as a behavioral bio-
metric for the purpose of authenticating a user. For exam-
ple, Pusara and Brodley [34] used mouse dynamics for

conducting re-authentication. Aimed and Traore [10] pro-
posed an approach that aggregates low-level mouse events
as higher-level actions, including point-and-clicks or drag-
and-drops action. Ahmed et al.’s work in [29] achieved a
very high authentication accuracy from the analysis of 2000
mouse actions. To deploy real-time authentication (such as
online re-authentication) based on mouse biometrics, Zheng
et al. [44] proposed fine-grained angle-based metrics to ana-
lyze mouse movement. Based on these metrics, they used
the support vector machines (SVM) to classify users. Their
results showed that a high accuracy based on few mouse
actions could be achieved. Zhao et al. studied the process of
people choosing gestures from a picture and were able to
hack a considerable number of picture passwords in their
experiments [43]. Stefan et al. proposed a cryptographic
verification approach to ensure keystroke integrity [41].
Xu et al. investigated the security of keystroke-dynamics
authentication against synthetic forgery attacks [42].

7 CONCLUSION

In this paper, we conducted a holistic investigation of pri-
vacy leakage from unencrypted Bluetooth mouse traffic. We
examined the Bluetooth mouse packet semantics to develop
two attacks, the prediction attack and the replay attack. The
two attacks reconstruct on-screen cursor trajectories based
on sniffed raw mouse movement data when a lightweight
or complex mouse acceleration algorithm is used. We also
presented a careful analysis of how packet losses and varia-
tions of packet arrival timing may affect the accuracy of
reconstructed cursor trajectories. Finally, we performed an
extensive evaluation of Bluetooth mouse sniffing on the
inference of passwords that a user enters through an on-
screen software keyboard. We proposed two approaches for
password inference: a basic inferring approach to enumer-
ate all candidate passwords from a clicking topology and an
enhanced inferring approach that uses the statistical distri-
bution of human clicking patterns to reduce the number of
candidate passwords corresponding to a clicking topology.
Our real-world experiments showed the severity of privacy
leakage from unencrypted Bluetooth mice. We also dis-
cussed potential countermeasures to the proposed attacks
in the online supplementary document. For future work,
we plan to extend our attack to graphical passwords such as
the picture password in Windows 8.
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