
Agent Division and Fusion for Task Execution in

Undependable Multiagent Systems

Yifeng Zhou and Yichuan Jiang*, IEEE Senior Member
Distributed Intelligence and Social Computing Laboratory,

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China.
*Corresponding author, email: yjiang@seu.edu.cn

Abstract—In multiagent systems, agents with limited capacity
often cooperate in order to accomplish various types of tasks.
Due to the openness of multiagent systems, agents may run the
risk of their cooperations to accomplish tasks because of some
involved undependable agents. The state of the art for
handling this problem concentrates on the phase of task
allocation, which aims to allocate tasks to more dependable
agents (task allocation-oriented). In fact, accomplishing a task
in a multiagent system requires two phases: i) task allocation,
and ii) task execution. Hence, this paper, on the contrary,
focuses on managing the phase of task execution to guarantee
the performance of task accomplishment (task execution-
oriented). To reduce the performance loss caused by
undependable agents, the proposed agent division and fusion
mechanism enables agents to autonomously divide themselves
into sub-agents for executing tasks with different risks (more
resources will be assigned to the sub-agent with lower risk in
task execution); then the sub-agents can also fuse together and
make a re-division to fit the current task environments. This
work is also expected to be able to complement the existing
state of the art (task allocation-oriented) for guaranteeing the
performance of task accomplishment in undependable
multiagent systems from task execution-oriented perspective.

Keywords-Multiagent system; agent division; agent fusion;
undependable; task allocation; task execution.

I. INTRODUCTION

Accomplishing tasks is a common duty of multiagent
systems (MASs) [1-2]. In MASs, agents often jointly
accomplish tasks through cooperation, since each agent may
have limited types and amount of resources and thus cannot
satisfy the requirement of a task solely [3]. The agent who
has a waiting task to accomplish should find other agents
with suitable resources to obtain commitment to jointly
execute the task [4]. Hence, accomplishing a task in MASs
often requires two phases: i) task allocation, and ii) task
execution.

In recent years, many task allocation mechanisms in
MASs have been proposed, which intend to improve the
system performance for accomplishing tasks by allocating
tasks to the most suitable set of agents to execute [5-8].
There is an underlying assumption in most of these works:
the agents in the system are all cooperative, i.e., all the
agents are initiative and dependable during the task
accomplishing process [8]. In fact, this type of multiagent

system which is widely concerned can be called “dependable
multiagent systems” (D-MASs).

In recent research, “undependable multiagent systems”
(U-MASs) has been also studied [1-2]. In U-MASs, some
undependable agents are involved [2][9], which may take
malicious behaviors, e.g., manipulating their resource status
information and breaking the contract, in the cooperation
with other agents to accomplish tasks [1-2][4][10]. For this
reason, the system performance may decrease significantly,
because of the failure of accomplishing tasks. To solve this
problem, task allocation models incorporating guaranteeing
mechanisms, e.g., the reputation model [4][11] and
reward/punishment mechanism [1], have been proposed,
which are expected to increase the dependability of task
accomplishment by allocating tasks to more dependable
agents [1][4]. These models concentrate on the first phase of
task accomplishment (task allocation), thus can be called
task allocation-oriented model for U-MASs.

On the contrary, in this paper we concentrate on the
second phase of task accomplishment (task execution) in U-
MASs. In D-MASs, there are some researches where agents
are able to make autonomous adaptation of themselves to
achieve a better performance during the process of task
execution [12-15]. These works provide inspiration for us to
propose task execution-oriented mechanism for U-MASs.

In U-MASs, an agent may run different levels of risk
when it cooperates with different agents to execute tasks. If
the agent executes the waiting tasks as it does in a D-MASs,
the utility it gained may suffer greatly, because this agent
may spend much time and all its resources on executing
tasks which actually may not be able to be accomplished. To
solve this problem, an agent division and fusion mechanism
(AgentD&F) is proposed in this paper, which enables agents
to autonomously divide themselves into paired sub-agents
for executing tasks with different risks (more resources will
be assigned to the sub-agent with lower risk in task execution,
i.e., with more dependable cooperators); and the sub-agents
can also fuse together and make a re-division to fit the
current task environments1. Hence, the allocated tasks can be
naturally executed with different priorities according to their

1 Agent fusion in this paper indicates the sibling-fusion, which can
be conducted by a pair of sub-agents that are derived from the
same original agent. Cross-fusion, which means the fusion of sub-
agents with different original agents, will be discussed in our
future work.

different levels of risks; the task with the lower risk will be
executed with the higher priority.

Through experimental evaluations, the performance of
the presented AgentD&F mechanism for U-MASs has been
validated. It can improve the utilities the system gained by
decreasing the failure rate of task execution.

The remainder of this paper is organized as follows.
Section 2 presents some typical related works. Section3
introduces the task accomplishing environment in the U-
MASs. Section 4 presents the details of the AgentD&F
mechanism. Section 5 presents experimental evaluations that
validate the effectiveness of the AgentD&F mechanism.
Finally, Section 6 concludes our paper and discusses the
future works.

II. RELATED WORK

A. Task Allocation in Undependable Multiagent Systems

Traditional works of task allocation in U-MASs often
incorporate some guaranteeing mechanisms, e.g. the
reputation model [1][4][11], the reward/punishment method
[1][4] and mechanism design [10], to improve the system
performance of task accomplishment.

Weerdt et al. proposed a task allocation approach using
mechanism design, which can guarantee the dependability of
agents’ cooperation by incentivizing agents to report their
status correctly [10]. Sonnek et al. presented reputation
mechanism to estimate reliability ratings of agents; and then
proposed several reputation-based task scheduling
algorithms to achieve efficient task allocation [11].

In our previous works [1][4], we proposed task allocation
models for U-MASs with simplex and multiplex network
structures respectively. In [1], a reputation model, which
considered not only the dependability of agents but also the
negotiation path, had been proposed to guarantee the
dependability of task allocation in the U-MASs with simplex
network structure. Then in [4], we extended our task
allocation model to fit the U-MASs with multiplex network
structure, which considered an additional aspect, the
dependability of the network layer, in the reputation model.

Overall, these approaches introduced above concentrated
on the task allocation phase of task accomplishment in U-
MASs, whereas they did not consider improving the system
performance from the task execution perspective. In this
paper, we aim to guarantee the system performance from the
task execution perspective, and the mechanism proposed is
expected to be able to be combined with the traditional task
allocation-oriented approaches for U-MASs to achieve a
much better performance.

B. Self-Organization in Dependable Multiagent Systems

Self-organizing mechanisms can enable agents to adapt
their configurations to fit the current environment of the
MASs in order to achieve better performance of task
accomplishment [12-14].

Mathieu et al. introduced three basic principles of self-
organizing multiagent systems, which are relation adaptation,
resource exchange and cloning/spawning [12]. Kota et al.
presented a decentralized structure adaptation mechanism,

which can enable agents to adapt their relations to
accomplish tasks more efficiently [13]. Ye et al. [14]
proposed an integrative self-organizing mechanism, which
considered all the three basic principles of self-organizing
multiagent system introduced by Mathieu et al. [12].

These works can improve the task accomplishing
performance of the systems effectively in D-MAS. However,
the situation of the failure of task execution which may be
caused by the behaviors of undependable agents in U-MASs
has not been taken into account. Despite this, these works
provide inspiration for us to propose the agent division and
fusion mechanism (AgentD&F) for U-MASs from task
execution-oriented perspective. AgentD&F can be seen as a
new variant of the principle, cloning/spawning, introduced
by Mathieu et al.[12].

III. TASK ACCOMPLISHING ENVIRONMENT IN U-MASS

A. The System Model

Definition 1: Multiagent system (MAS). A multiagent
system is given by <A, E>, where A is the set of agents,
and <ai,aj>E indicate the existed relations between
agent ai and aj. Agents in the MAS can cooperate to
accomplish tasks through their relations.

Definition 2: Agent. An agent ai can be characterized by 1)
Ei, the relations with its neighbors Nai, 2) Rai, its
resources for executing tasks, and 3) Qai, its task queue
waiting for execution. Thus, ai is represented by a tuple
< Ei, Rai, Qai>.

1. Ei is the set of relations between agent ai and its
neighbors Nai .

2. Rai = (r1
ai, r

2
ai,…, r

k
ai), where rk

ai is the number of type
k resources of agent ai.

3. Qai = (Qai(0), Qai(1),…, Qai(l)), where Qai(l) is the lth
task in the task queue Qai of agent ai, and l is the
length of task queue Qai.

Definition 3: Task. A task, T, arriving to the multiagent
system can be represented by <RT, UT, tT>, where RT is
the requirement of a set of resources for accomplishing
task T, UT is the utility that can be gained from the
successful accomplishment of T and tT is the time limit
for accomplishing task T. The successful
accomplishment of the task T can be achieved if the
following conditions are satisfied:

1. The resource requirement RT is satisfied, i.e.,

x T x
T a A a

R R

 , where AT is the set of agents who
cooperate to execute the task T.

2. The time limit tT for accomplishing T is satisfied, i.e. tT’

≤ tT, where tT’ is the real executing time of T.

Definition 4: Task accomplishment in MAS. A task T can
be accomplished by performing the following two steps:

1. Task allocation: first, seeking for the set of agent AT,
which satisfies ai, ajAT, Pij⊆ E, and

x T x
T a A a

R R

 ,
where Pij is the negotiation path between ai and aj;
second, assigning the predetermined sub-tasks (each

sub-task is a part of the resource requirement of T) to
corresponding agents, i.e., inserting the sub-tasks into
their waiting task queues.

2. Task execution: when all the sub-tasks of T allocated to
the set of agent AT are executed, i.e., there is no sub-
task of T that still exists in the task queues of AT
waiting for execution, the execution of task T is over.

Definition 5: Dependable and undependable agents for
task execution in U-MASs. The dependability of an
agent is determined by two aspects of its behaviors in
accomplishing tasks:
1) Resource status reporting in task alloction.

 A dependable agent reports its real status of resource to
the system or other agents in task allocation [1][4].

 An undependable agent fabricates its status of resource
in task allocation, e.g. over-reporting [1][4].
2) The strategy in executing allocated tasks.

 A dependable agent, ai, executes the tasks in its task
queue Qai in order, i.e. Qai(x), Qai(y) Qai and x<y,
Qai(y) must be executed after Qai(x).

 An undependable agent, ai, may manipulate the task
executing order, i.e. it allows the situation that, if x<y,
Qai(y) can be executed before Qai(x).

B. The Objective

Agents cooperate to jointly accomplish tasks in order to
gain utilities from tasks arriving to the system. As
demonstrated in previous section, each task can provide a
defined utility if it is accomplished successfully. But if the
task is not accomplished because of the unsuccessful
execution or the overtime execution, the utility cannot be
obtained.

We define the utility rate (UR) to reflect the effective-
ness of the system for accomplishing tasks. Utility rate is
defined as follows.

Definition 6: Utility rate. Let {T} be the set of tasks
arriving to the system, {T}’ is the set of tasks that are
accomplished, and {T}’⊆{T}. The Utility rate (UR) is
calculated by

{ } { }' { }i ji j
T T TT T T T

UR U U

 (1)

where UTi is the utility of task Ti.

Therefore, the objective of task accomplishment in
undependable multiagent systems (U-MASs) is to maximize
the utilities obtained from the set of tasks arriving to the
systems.

As undependable agents involved, the tasks may have
different probabilities to be accomplished when they are
allocated to different agents. Thus, to satisfy this objective,
the limited resources of the agents should be preferentially
accessed to execute the tasks with higher probability to be
accomplished.

We propose the agent division and fusion mechanism,
which enables agents to autonomously divided themselves
into paired sub-agents for executing tasks with different risks;

and the sub-agents can also fuse together and make re-
division to fit the current task environments. Hence, the tasks
can be naturally executed with different priorities according
to their different levels of risks. Thus, the utility loss caused
by undependable agents can be reduced.

IV. AGENT DIVISION AND FUSION

Agent division and fusion (AgentD&F) mechanism
enables the agent (called original agent) to divide itself into
two sub-agents and also enable the sub-agents to fuse
together to make a re-division. Fig. 1 gives an example of
agent division and fusion.

Each sub-agent obtains a part of the relations, resources,
and the allocated tasks of the original agent. Hence, agent
division and fusion requires the following aspects.
 Relation division and fusion: the set of relations of an

original agent ai, Ei, can be divided into two groups: low-
risk group, Ei

+, and high-risk group, Ei
-,where Ei = Ei

+ ∪
Ei

-. The high-risk and low-risk groups are composed of
the relations with neighbors with relatively lower and
higher dependability (see Definition 8). The sub-agents
will have Ei

+
 and Ei

-, respectively. The relation fusion is
the inverse process of relation division.

 Resource division and fusion: the resources of the
original agent ai, Rai, should be also divided into two
parts: Rai

+ and Rai
-, according to the division results of

the relations. More resources will be assigned to the sub-
agent with low-risk group of relations. The resource
fusion is the inverse process of resource division.

 Task queue division and fusion: the allocated task queue
of the original agent ai, Qai, should be divided into Qai

+
and Qai

-, according to the division results of relations. If a
task is allocated from the relations in Ei

+, the task will be
divided into the sub-agent with Ei

+, and vice versa. The
task queue fusion is the inverse process of task queue
division.

Thus, agent division and fusion can be defined as:

, ,

(, , , , ,)

i i

i i i i

D

i i a a
F

i i a a i i a a

original agent

riskless sub agent risky sub agent

a E R Q

a E R Q a E R Q

 (2)

Figure 1. An example of agent division and fusion.

Original
agent

Sub-agents

Task queue

D D

F F

Resources

D: division F: fusion

Relations

By performing agent division, two sub-agents can be
produced from an original agent. The sub-agent, ai

+, which
carries the low-risk relations Ei

+, is called the riskless sub-
agent; and the sub-agent, ai

-, which carries the high-risk
relations Ei

-, is called the risky sub-agent. And by performing
agent fusion, the two sub-agents can join together to be the
original agent.

To implement agent division and fusion, there are two
important problems need to be solved: when and how to
perform agent division and fusion.

A. Activation of agent division and fusion (When?)

 Activation of agent division

Whether to perform agent division by an agent is
determined by two aspects: the division desire derived from
the current task executing situation of the agent and the
division threshold of this agent.

In the following, we first give some preliminary
definitions.

Definition 7: Failure rate of task execution. Let ξi
represent the failure rate of task execution of agent ai,
then ξi is defined as:

() /succ

i i i i
h h h (3)

where hi is the total number of tasks agent ai has
executed (hi >0), and hi

succ is the number of tasks
accomplished successfully.

Definition 8: Dependability of agents and tasks. Let hij be
the total number of tasks allocated by agent aj then
executed by ai, hij

succ be the corresponding number of
tasks accomplished succesfully. The dependability of
agent aj evaluated by ai is defined as:

0.5 0.5 (()) /succ succ

ij ij ij ij ij
h h h h (4)

Note that hij>0, if hij=0, σij =0.5.
The dependability of a task T allocated by aj to ai is
defined as:

()
ij

T (5)

The division desire of an agent is influence by the
circumstance of the task execution. On one hand, the failure
rate of past tasks executed by the agent should be first
considered. If the failure rate is higher, the agent should be
more willing to perform the mechanism of agent division to
improve the task execution performance. Then on the other
hand, the influence (utility loss) on the performance of task
execution caused by agent division also needs to be
considered. Such influence has been often considered by the
self-organizing mechanism in D-MASs [13][15]. In order to
decrease the utility loss, agent division should be performed
when there are few tasks waiting in the task queue, and the
tasks with higher dependability tend to be at the queue tail
(according to the following theorem).

Let Qai be the current task queue of ai. Then we have the
following theorem.

 Theorem 1. It is assumed that the relation division of the
agent division will be correct and the allocated tasks in Qai
can be executed just satisfying their corresponding time
limits. Then if the dependable tasks are at the task queue
tail, the utility loss caused by agent division will be the
least.

Proof sketch. Performing agent division, the task queue Qai
will be divided into Qai

+ and Qai
-. Because of the

resource division, more execution time for each task will
be required. Then if the tasks in Qai can just satisfy the
corresponding time limits, the tasks at the queue tail of
Qai will have higher probability to be accomplished after
division because of their larger time limits. Then
According to assumption of the correctness of the
relation division of the recent agent division, the set of
dependable tasks {Ti}

+ can be accomplished if their time
limits are satisfied, and the set of undependable tasks
{Ti}

- cannot be accomplished even if their time limits are
satisfied. Then if {Ti}

+ can be at the tail of Qai, the
expected utility loss will be minimized.

Definition 9: Division desire. Let Qai be the current task
queue of ai. The division desire of agent ai, DEi, is
defined as:

1
()

| | 1 i

i

i i a

a

DE g Q
Q

 (6)

where

| | 1

0

(())

| | 1
| | (| | 1) 2

1 | | 0

,()

,

ai

i

i i

Q

x

i
i

i

a

a a

a
a

a

Q x x

Q Q
Qg Q

Q

 (7)

In Equation (7), x is the index of the task in the task
queue, and τ(Qai(x)) is the dependability of the task
T(Qai(x)) calculated by Equation (5).

Therefore, if DEi > Thesi, where Thesi is the division
threshold of agent ai, agent division will be performed by ai
immediately.

 Activation of agent fusion

With the execution of some tasks after agent division, the
sub-agents can evaluate whether they can take advantage of
the recent division for task execution; if the experiences
indicate that the recent division cannot take effect recently,
the agent fusion will be performed by the sub-agents. (the
sub-agents we mentioned here are with the same original
agent.)

The conditions for agent fusion are presented as below:

1succ

i i i
h h (8)

1succ

i i i
h h (9)

where hi
+succ and hi

-succ are the numbers of tasks executed
successfully by the riskless and risky agent, ai

+ and ai
-,

respectively; hi
+ and hi

- are the total numbers of the tasks
executed by ai

+ and ai
-, respectively; ξi is the failure rate of

task execution calculated by (3) in recent division; ε is the
tolerance parameter set by the agent (ε > 0). When the
conditions in (8) and (9) are satisfied, agent fusion will be
performed immediately.

B. Agent division and fusion (How?)

When an agent decides to perform agent division or fusion,
there are three aspects of division and fusion should be
conducted: relation division and fusion, resource division and
fusion, and task queue division and fusion. We present the
approaches that show how to conduct each type of division
and fusion in the following.

 Relation division and fusion

The relation division plays the most important role in
agent division compared with the resources division and task
queue division, since it determines whether the cooperators
(neighbors) with the agent can be effectively divided into
groups for executing tasks with relative lower risk and higher
risk, respectively.

For relation division, we use a k-means clustering
approach [16] to divide the set of relations of the original
agent into two sets. Each relation can be a node in the set,
and the “location” of the relation is the dependability of its
corresponding agent, for example, σij can represent the
location of the relation eij between agent ai and aj. Two initial
cluster centers in the clustering approach are set to 0.0 and
1.0, respectively. The algorithm for relation division is
presented in Algorithm 1. Moreover, with the relation
division, the direct neighbors of the agent have been also
divided into Ni

+ and Ni
-.

Relation fusion in agent fusion is an inverse process of
relation division. It can be simply presented by Ei = Ei

++ Ei
-.

When sub-agents decide to make agent fusion, the relation
fusion will be firstly conducted. Due to space limitation, we
do not present the details of relation fusion here.

 Resource division and fusion

After the relation division, the resource division needs to
be conducted to determine how many resources should be
assigned to the riskless and risky sub-agents. To reduce the
risk of task execution and improve the system performance,
more resources of the original agent will be assigned into the
riskless sub-agent, such that more utilities are expected to be
obtained from the dependable tasks since they will have a
high probability to be accomplished and will be executed
with higher priority.

Hence, performing resource division should directly refer to
the results of relation division. Two aspects of the results of
relation division need to be taken into account: 1) the numbers
of relations in Ei

+ and Ei
-; 2) the difference of dependability

between Ei
+ and Ei

-. The former aspect can naturally
determine the quantity of tasks each sub-agent will be
allocated; the more relations the sub-agent has, the more

resources will be assigned to this agent. The latter aspect can
reflect the dependability difference of the allocated tasks;
hence if the larger difference of the dependability of the
relations respectively in Ei

+ and Ei
-, more resources will be

assigned to the riskless sub-agent.
Let |Ei

+|,|Ei
-|and |Ei| be the number of relations in the

riskless sub-agent, the risky sub-agent and the original agent,
respectively (|Ei|=|Ei

+|+|Ei
-|), σij represent the dependability

of the relation eij between agent ai and aj. The resources
division is defined as:

(())ij i ik i

i i

ij ike E e E

a a i i

i i

R R E E
E E

 (10)

(())ij i ik i

i i

ij ike E e E

a a i i

i i

R R E E
E E

 (11)

where ω is the parameter to adjust the preference for
resource assignment, and ω > 0.

Resource fusion is also an inverse process of resource
division, which can be represented by Rai = Rai

+ + Rai
-. Due to

space limitation, we do not present the details of resource
fusion here.

 Task queue division and fusion

After the relation division, the task queue division can be
conducted according to the division results of relations of the
original agent (actually the division results of the direct
neighbors, Ni

+ and Ni
-).

Let T(Qai(x)) be a task in the waiting task queue of agent
ai, where x is the index of the task in the queue. If T(Qai(x)),

Algorithm 1. Relation Division.
/* k: the number of clusters; Ei: the set of relations of
agent ai; Disj-cp and Disj-co: the distance between eij and the
cluster center cp and co in the k-means clustering
approach, respectively. */
Input: k=2, and Ei.
Ei

+={}, Ei
-={};

arg max
ix i

ix e E ix
e

 ; arg min

iy i
iy e E iy

e

 ;
cp=1.0; co=0.0; /*set initial cluster center*/
cp’=-1; co’=-1;
While ((cp!=cp’) or (co!=co’)) do:
 cp’=cp; co’=co;
 For eijEi, do:

 Disj-cp = | σij – cp | ;

 Disj-co = | σij – co| ;

 If (Disj-cp < Disj-co), then: Ei
+= Ei

+ ∪ eij ;

 Else: Ei
-= Ei

- ∪ eij ;

()
ij i

ij ie E
cp E

()
ik i

ik ie E
co E

Output: Ei
+ and Ei

- .

is executed through the cooperation with agent aj, and aj
Ni

+, then this task will be assigned to the riskless sub-agent
ai

+, i.e., this task will be inserted into the riskless sub-agent’s
task queue, Qai

+, and vice versa. Finally, by conducting task
queue division, the task queue of ai, Qai, will be divided into
Qai

+ and Qai
-, which are the task queues of the corresponding

sub-agents, respectively.
Task queue fusion is the most important aspect of agent

fusion, since it will influence the task execution order of the
allocated tasks. In order to guarantee the performance of task
accomplishment, we get the following theorem to guide the
task queue fusion.

Let Qai
+ and Qai

- be the waiting task queues of the
riskless sub-agent ai

+ and the risky sub-agent ai
-, respectively,

and Qai be the waiting task queue of the expected fused agent.

Theorem 2. It is assumed that the relation division of the
recent agent division is correct and the allocated tasks in
Qai

+ and Qai
- can be executed just satisfying their

corresponding time limits. Then, if the task queue fusion
is conducted by inserting Qai

+ and Qai
- into Qai in order,

the optimal task queue fusion can be achieved.

Proof sketch. According to the assumption of the
correctness of the relation division of the recent agent
division, the tasks in Qai

+ are expected to be accomplished if
they are executed satisfying their time limit, while the tasks
in Qai

- cannot be accomplished caused by some agents’
undependable behaviors. Hence, the expected maximum
utility equals

ii ai
TT Q

U
 . Combining Qai

+ and Qai
-together

into Qai causes the arrangement of the tasks, which will lead
in the situation that the execution of some tasks cannot
satisfy their time limits. Hence, only by inserting Qai

+ and
Qai

- into Qai in order can make the execution of all the tasks
in Qai

+ satisfy their time limit, and then can be accomplished.
Therefore, the expected utility can equals

ii ai
TT Q

U
 .

V. EXPERIMENTAL VALIDATION

A. Experimental Settings

To validate the effectiveness of the proposed agent
division and fusion mechanism (AgentD&F) for
guaranteeing the performance of task accomplishment in
undependable multiagent systems, the index, utility rate (UR)
introduced in Definition 6 is employed. UR indicates how
many utilities are finally gained from the set of tasks arriving
to the system.

Accomplishing a task in MASs requires two phases: i)
task allocation, and ii) task execution. The presented
AgentD&F mechanism can be conducted simultaneously in
the task execution phase when agents are executing the
allocated tasks. Then, in the task allocation phase, the
allocation model used by the system to allocate tasks to
agents is introduced in the following, which accords with the
manager/contractor architecture [1] of task allocation in
MASs.

 A task, T, arriving to the system can be firstly allocated
to a randomly selected agent, ai, who acts as the manager
for this task.

 The manager agent, ai, should then request the agents in
its direct neighbor set Ni for contractors. The set of agents
who responds to the request is NCi.

 If the requirements of the resource and time limit of T
can be satisfied by the set of agents {ai, NCi}, the task T
is allocated successfully. Otherwise, the allocation
process will return to the manager selection step.

The initial network of the U-MASs is constructed by a
random network model [17], in which 100 agents are
included. The probability of relation construction for any
randomly selected agents is set to 0.15. The division
threshold for each agent is set randomly, ranging from 0 to
0.05; and the tolerance parameter, ε, for the activation of
agent fusion (see Equation 8 and 9) and the preference
parameter, ω, for resource division (see Equation 10 and 11)
are both set to 0.1 in the experiments. The two types of
undependable behaviors of agents (See Definition 5 in
Section 3) are both involved in the system. Note that each
experiment in this section comprises 100 runs to obtain the
average results.

B. Results and Analyses

Fig. 2 shows the experimental results of the utility rate
(UR) and the total utility of task accomplishment with
different number of tasks arriving to the system.

Fig. 2(a) shows the test results of utility rate of the tasks
arriving to the system. We find that incorporating our
mechanism into task execution, the utility rate of the system
can be improved remarkably; and with the increase of the
number of tasks, the performance of our mechanism can be
better. This indicates that agent division and fusion
mechanism can learn and fit the environment well. For more
clear understanding, we have shown the corresponding
results of total utility of the system in Fig. 2(b). A higher
utility rate of task accomplishment in Fig 2(a) implies that a
higher total utility of the system can be gained.

The reasons for such results are as follows. Without our
mechanism, agents will cooperate with other agents with
equal priority. i.e., an agent will execute the allocated tasks
in accordance with the allocated sequence and with all its
resources. However, with the involved undependable agents,
many tasks may be not able to be accomplished. There will
be a large amount of utility loss. Then on the contrary, after
evaluating the dependability of relations and neighbors,
agent division and fusion mechanism enables agents to
cooperate with others with different priorities by dividing
itself into two sub-agents. More resources can be spent to
cooperate with more dependable neighbors to accomplish
tasks. Hence, the utility loss caused by undependable agents
will be reduced. Moreover, with more experiences of task
execution, agents can have more accurate evaluations of the
dependability of its relations and neighbors; then by
conducting agent fusion to make re-division, the system
performance can be better. This is also the reason of the
evolving property of our mechanism.

Fig. 3 shows the test results of failure rate of tasks caused
by two types of undependable behaviors of agents in the
system (See Definition 5 in Section 3): (i) resource
information fabrication (type-1), and (ii) waiting task queue
manipulation (type-2). Fig. 3(a) and (b) show the results of
failure rate that caused by the type-1 and type-2
undependable behaviors, respectively, and Fig. 3(c) shows
the results of failure rate caused by the mixed (both the type-
1 and type-2) undependable behaviors at the same time.

From Fig. 3, we observe that with agent division and
fusion mechanism, the failure rate of tasks can be reduced if
more tasks are allocated and executed. In Fig. 3 (b) and (c),
with a small number of tasks, the failure rate caused by the
type-2 and mixed undependable behaviors is low. This is
because the manipulation of waiting task queue cannot
influence the satisfying of tasks’ time limits, when the load
on the agents is low. Moreover, we also observe that type-1
undependable behaviors have much larger influence on the
execution of tasks than the type-2 undependable behaviors in
the environment with mixed undependable behaviors.

In Fig. 4, we investigate the effect of agent division and
agent fusion on guaranteeing the task accomplishing
performance in our mechanism, respectively. We compare

the test results that derived from Agent division (without the
component of agent fusion) with the results that derived from
the complete AgentD&F. From Fig. 4, we find that without
agent fusion, the performance of task accomplishment is a
little bit lower than that with complete AgentD&F. The
reason is that with the execution of tasks, the local
environment of an agent will be dynamic changed. Thus,
giving agents opportunity to fuse together to make re-
division can improve the system performance. Even if the
results show that agent division takes larger effect, it can be
speculated that with more tasks, agent fusion will have larger
effect on the improvement of task accomplishment.

VI. CONCLUSIONS AND FUTURE WORKS

To improve the performance of task accomplishment in
undependable multiagent systems (U-MASs), a novel
optimizing perspective has been first considered in this paper:
the task execution-oriented perspective; and then from this
perspective, a novel agent division and fusion mechanism for
U-MASs has been presented.

Unlike task allocation-oriented approaches for U-MASs
guaranteeing the task accomplishing performance by
allocating task to more dependable agents, the mechanism

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.3

0.4

0.5

0.6

U
ti

li
ty

 r
at

e

Number of tasks

 AgentD&F
 only task allocation model

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

4000

8000

12000

T
ot

al
 u

ti
li

ty

Number of tasks

 AgentD&F
 only task allocation model

(a) (b)

Figure 2. The test results of utility rate and total utility of the system.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.40

0.45

0.50

0.55

0.60

F
ai

lu
re

 r
at

e
of

 t
as

k
s

Number of tasks

 AgentD&F

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.000

0.002

0.004

0.006

0.008

F
ai

lu
re

 r
at

e
of

 t
as

ks

Number of tasks

 AgentD&F

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.000

0.001

0.002

0.003

0.004

0.005

F
ai

lu
re

 r
at

e
of

 t
as

k
s

Number of tasks

 AgentD&F

 (c)

Figure 3. The test results of failure rate of task execution caused by the undependable behaviors: resource information fabrication (a), waiting task queue
manipulation (b), and both the above two types of undependable behaviors (c).

from task execution-oriented perspective enable agents to
change their configurations autonomously in the task
execution process in order to improve the task accomplishing
performance. To reduce the utility loss caused by
undependable agents, the presented agent division and fusion
mechanism first enables agents to divide themselves into two
sub-agents to cooperate with agents of different
dependability to execute tasks (more resources of the original
agent will be assigned to the sub-agent with more
dependable neighbors); then it can also enables the sub-
agents to fuse together to make a re-division to fit the current
task environments. Through experimental evaluations, we
indicate that incorporating the agent division and fusion
mechanism into task execution process in U-MASs, the
failure rate of tasks can be largely reduced; then the utility
rate of tasks gained by the system can be improved.

In future work, we will devise a cross-fusion mechanism
which can enable sub-agents from different original agents to
fuse together to obtain further improvement of task
accomplishing performance. Moreover, a comprehensive
trust model used by the agents to achieve more accurate
dependability evaluation of relations and neighbors will be
incorporated into the agent division and fusion mechanism.
Finally, we will try to incorporate this mechanism into our
task allocation model [1] for U-MASs to seek for a larger
guaranteeing effect on task accomplishing performance in U-
MASs.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No.61170164, No. 61472079), the
Program for Distinguished Talents of Six Domains in
Jiangsu Province (No.2011-DZ023), and the Funds for
Distinguished Young Scholars of Jiangsu Province
(BK2012020).

REFERENCES
[1] Y. Jiang, Y. Zhou and W. Wang, “Task Allocation for Undependable

Multiagent Systems in Social Networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 8, pp. 1671-1681, 2013.

[2] Y. Jiang and J. C. Jiang. “Understanding Social Networks from a
Multiagent Perspective,” IEEE Transactions on Parallel and
Distributed Systems, 2014.

[3] O. Shehory, S. Kraus, “Methods for Task Allocation via Agent Coali-
tion Formation,” Artificial Intelligence, vol. 101, no. 1-2, pp.165-200,
1998.

[4] Y. Jiang, Y. Zhou, Y. Li. Network Layer-Oriented Task Allocation
for Multiagent Systems in Undependable Multiplex Networks.
Proceedings of the 2013 IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-13), pp.640-647, Washington, DC,
USA, November 4-6, 2013.

[5] Y. Jiang, Z. Huang, “The Rich Get Richer: Preferential Attachment in
the Task Allocation of Cooperative Networked Multiagent Systems
with Resource Caching,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 42, no. 5, pp. 1040-
1052, 2012.

[6] Y. Jiang, and J. C. Jiang, “Contextual Resource Negotiation-Based
Task Allocation and Load Balancing in Complex Software Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no.
5, pp. 641-653, 2009.

[7] J. Liu, X. Jin, and Y. Wang, “Agent-Based Load Balancing on
Homogeneous Minigrids: Macroscopic Modeling and Character-
ization,” IEEE Transactions on Parallel and Distributed Systems, vol.
16, no. 7, pp. 586-598, July 2005.

[8] S. Kraus and T. Plotkin, “Algorithms of Distributed Task Allocation
for Cooperative Agents,”Theoretical Computer Science, vol. 242, no.
1-2, pp. 1-27, 2000.

[9] Y. Jiang, and J. C. Jiang. “Diffusion in Social Networks: A
Multiagent Perspective,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, DOI: 10.1109/TSMC.2014.2339198.

[10] M. Weerdt, Y. Zhang, T. Klos, “Multiagent Task Allocation in Social
Networks,” Autonomous Agents and Multi-Agent Systems, vol. 25, no.
1, pp. 46-86, 2012.

[11] J. Sonnek, A. Chandra and J. B. Weissman, “Adaptive Reputation-
Based Scheduling on Unreliable Distributed Infrastructures” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 11, 2007.

[12] P. Mathieu, J.-C. Routier, and Y. Secq, “Principles for Dynamic
Multi-Agent Organizations,” Proceedings of the 5th Pacific Rim
International Workshop on Multi-Agents: Intelligent Agents and
Multi-Agent Systems (PRIMA’02), pp. 109-122, Tokyo, Japan, August
18–19, 2002.

[13] R. Kota, N. Gibbins, and N. R. Jennings, “Decentralised Approaches
for Self-Adaptation in Agent Organizations,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 7, no. 1, pp. 1-28, 2012.

[14] D. Ye, M. Zhang and D. Sutanto, “Cloning, Resource Exchange, and
Relation Adaptation: An Integrative Self-Organisation Mechanism in
a Distributed Agent Network”, IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 4, 2014.

[15] D. Ye, M. Zhang and D. Sutanto, “Self-organization in an agent
network: A mechanism and a potential application,” Decision Support
Systems, vol. 53, no. 3, pp. 406-417, 2012.

[16] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proceedings of the Fifth Symposium on
Math, Statistics, and Probability, pp. 281-297, Berkeley, CA, 1967.

[17] M. E. J. Newman, D. J. Watts, and S. H. Strogatz, “Random Graph
Models of Social Networks,” Proceedings of the National Academy of
Sciences, vol. 99, pp. 2566-2572, 2002.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.3

0.4

0.5

0.6

U
ti

li
ty

 r
at

e

Number of tasks

 AgentD&F
 Agent division
 only task allocation model

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

2000

4000

6000

8000

10000

12000

T
ot

al
 u

ti
li

ty

Number of tasks

 AgentD&F
 Agent division
 only task allocation model

(a) (b)

Figure 4. The effect of agent division and agent fusion in AgentD&F mechanism.

