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Abstract

In now multi-agent systems, the underlying networks are always dynamic and the network topologies are always changed in the operation.

Therefore, the coordination of agents shall be adjusted for the dynamic network topology. Aiming at the dynamics of underlying network

topology, a novel adaptive multi-agents coordination model is explored in this paper. In the paper, a series of algorithms for multi-agent task

and resource negotiation are provided. The provided algorithms consider the factors of network topology and agent distribution, and can

implement effective task allocation and resource negotiation for current network topology. Therefore, the adaptation of agent coordination

for dynamic underlying network topology can be achieved, which is also proved by the case studies and performance analyses in the paper.
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1. Introduction

In the multi-agent system, the autonomous agents

coordinate to execute the allocated task. An agent can profit

from the actions of other agents, as well as benefit to other

agents. Coordination computing cannot only make

individual agent try its best but also combine agents to

improve the ability of the overall system. Otherwise,

coordination can save system resource and make the agent

system more flexible.

Indeed, cooperation is often considered as one of the key

concepts of agent communities (Buccaafurri, Rosaci, Sarne,

& Palopoli, 2004). Automated intelligent agents inhabiting

a shared environment must coordinate their activities.

According to different system environments, such as the

level of agents cooperation, agents regulation and protocols,

the number and type of agents, and the communication

cost, we can explore different coordination strategies in

multi-agent systems (Kraus, 1997). But, whatever

coordination strategy we explored, to realize effective
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agent cooperation, we should resolve the following two

key problems: task allocation and resource negotiation.

Only after solving them well, a real effective coordination

strategy may be achieved.

When a multi-agent system wants to execute a task, the

first step is to allocate the task to some agents, which is

called task allocation (Billionnet, Costa, & Sutter, 1992;

Tanaev, Sotskov, & Strusevich, 1994). The main problem in

the task assignment is that no agent is versatile, and each

agent has different capabilities and can only fulfil a subset of

the tasks. Therefore, we should make an effective task

allocation, i.e. get effective tasks-agents mapping strategy.

The main goal of the task allocation is to maximize the

overall performance of the system and to fulfil the tasks as

soon as possible (Kraus & Plotkin, 2000).

There are some existing researches about the agent task

allocation, which can be divided into central controlled

fashion (e.g. Chang, Phiphobmongkol, & Day, 1993;

Georgeff, 1983) and the distributed ones (e.g. Kai-Hsiung

Chang & Day, 1990; Sandholm, 1993; Smith, 1980).

The central controlled fashion is simple to understand

and implement, which mainly adopts a central managing

agent to implement the task allocation, and the managing

agent is assumed to have information about the

constraints and capabilities of all other agents and knowl-

edge about the domain environment (Chang et al., 1993).
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Therefore, the managing agent has to contain large storage

of information, and may become the performance

bottleneck.

In distributed task allocation fashion, agent can enact an

auction among the agents and can match agents with tasks

suing a cooperative bidding approach without any central

authority (Palmer, Kirschenbaum, Murton, & Zajac, 2003;

Shehory & Kraus, 1998). In distributed mechanism, there is

no central authority that distributes the task among agents,

and the agents shall reach an efficient task allocation by

themselves, seeking a solution for to fulfil the constraints. A

well-known example of the distributed task allocation is the

Contract Net Protocol (e.g. Sandholm, 1993; Smith, 1980).

Obviously, the distributed task allocation fashion does not

produce a ‘performance bottleneck’ in the system.

However, it is difficult to impose effective control on the

task allocation process. Otherwise, the dynamics of network

topology is difficult to manage in the distributed fashion.

Therefore, similar to Kraus and Plotkin (2000), we

consider the problem of distributed dynamic task allocation

by a collection agents with central controlled model, where

only one distinguished agent (manager) knows about all of

the agent distribution, the network topology, and the agent

capabilities.

A coordination mechanism that works well in a

reasonable static environment will often perform poorly in

a dynamic and fast changing one (Excelente-Toledo &

Jennings, 2004). Therefore, the adaptation of task allocation

for dynamic environment should be addressed. Nowadays,

the networks show themselves a new phenomenon, which is

the network topology dynamics. In the operation of network,

some nodes may enter or depart randomly, some links

among nodes may be built or terminated randomly, and the

distances among nodes may change randomly. Dynamic

network topology modifications are essential for many

reasons, e.g. to maintain a connection due to node mobility.

Aiming at the dynamics of the underlying network

topology, the task allocation of multi-agent system should

adapt itself according to the network topology. Therefore, in

this paper, we introduce some concepts about the agent

distribution and network topology, and present a series of

algorithms for the task allocation for current network

topology. The main difference between the other task

allocation works and our problem is that the factors of

underlying network topology and the agent distribution are

considered in our work. Therefore, our solution can make

the task allocation adapt to the underlying network topology

and agent distribution.

After a task is allocated to a subset of agents, the agents

require some resources to execute the task. However, the

allocated agents may have not enough resources to finish the

task but other agents may have redundant resources.

Therefore, we should solve the agents’ resource shortage

conflicts and effectively accomplish tasks through agent

resource negotiation. An agent can borrow resource from

other agents by resource negotiation. However, a resource
conflict can happen when more than one agent attempts to

seek the same critical resource at the same time (Findler,

1995). In Findler (1995), N.V. Findler proposed a technique

called ‘hierarchical iterative conflict resolution’ which

resolves the conflicts in an iterative manner, based upon a

hierarchy of task priorities. With that technique, agents with

higher priority tasks may take resources belonging to agents

with lower priority. However, the technique in Findler

(1995) does not take the underlying network topology

(e.g. geographically distance between agents) into account,

therefore, it cannot perform well in the dynamic topology

networks. In this paper, we consider the network topology

and the geographically agent distribution, and present a

series of algorithms for agent resource negotiation which

solve the resource conflict according to not only the task

priority but also the geographically agent distribution.

Therefore, our algorithms can make the agent resource

negotiation adapt for the network topology.

Agents should represent their knowledge about the

environment in some forms, such as graph (Schuster,

2000), ontology (Gruber, 1991), etc. In this paper, we only

consider the agent knowledge about the resource

distribution in the network. By considering the resource

ownership and location, we use the linked list to represent

the knowledge of resource distribution, and present an

autonomous agent resource negotiation mechanism. In our

autonomous agent resource negotiation mechanism, agent

can find the geographically nearest resource of the agent

with lower priority task within its own knowledge

about agent distribution, and agents can communicate

their knowledge by the integration of linked list.

The rest of this paper is organized as follows. Section 2

presents the task allocation model and algorithms for

dynamic topology networks. Section 3 addresses the

resource negotiation in dynamic topology networks and

presents the algorithms. Section 4 introduces the linked list

to represent the resource knowledge of agent, and

presents an autonomous resource negotiation mechanism.

In Section 5, the case studies and performance analyses are

described. Finally, Section 6 concludes the paper.
2. Task allocation for dynamic topology networks

2.1. Formal descriptions

Kraus and Plotkin (2000) gives the formal definitions of

the environment for the distributed task allocation for

cooperative agents. However, they do not deal with the

agent distribution in the network and the network topology.

To adapt for the dynamic topology network, now we extend

the formal definitions in Kraus and Plotkin (2000), and

present the formal definitions for the agent coordination in

dynamic topology networks.

We consider a multi-agent system consisting of a set

of agents A which are distributed on a network topology N;
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the agents can perform different tasks, the set of all tasks is

T; the execution of each task requires different capabilities

of agents, each agent has some capabilities, the set of all

agent capabilities are denoted as C.

Therefore, in the agent system environments with

dynamic underlying topology network, we can assume

that there are four kinds of binary relations:

ar2 ar4
(1)

a6 a6 a8a7a1 a4 a2 a3

voting voting
r13A!C such that for any ai2A, cj2C, air1cj holds

iff agent ai has the capability cj;
(2)

has has
r23A!N such that for any ai2A, nj2N, air2nj holds

iff agent ai locates on the node nj;

c4c2
(3)
Fig. 1. An example of the formal descriptions.
r33T!C such that for any ti2T, cj2C, tir3cj holds iff

task ti requires the capability cj;
(4)
 r43T!A such that for any ti2T, aj2A, tir4aj holds iff

task ti is allocated to the agent aj;
In multi-agent systems, each agent has different

capability, and each agent can locate on different host. To

execute a task, some agent capabilities shall be satisfied, and

the task shall be allocated to some agents.

Given ai,aj2A, we denote by Cai
;Caj

4C the set of

capabilities that agent ai and aj has respectively. Two agents

may have the same capability, thus it may be the case that

for some ai,aj2A, Cai
hCaj

sf.

Now we assume that there is a task ti2T that arrives at

the agent system, and ti needs a set of capabilities Cti
4C,

the cardinality of Cti
is n. For each cj 2Cti

4C, there may

be several agents that have it. We denote by A
cj

ti
4A the set

of agents that have the same capability cj (cj is required by

task ti). Obviously, it may be the case that for some jisj2,

A
cj1
ti

hA
cj2
ti

sf.

In the agent system, the agents are distributed on the

network, therefore, the communication costs among differ-

ent agent sets are different. If more than one agent have the

same capability required by the task, we shall select an agent

among them such that the communication cost between it

and other agents (executing the task) is the minimum.

Therefore, let ti be the task that arrives at the agent

system, Cti
Z fc1; c2;.; cng be the capabilities set required

by the task ti, A
ci
ti

be the agents set that have the same

capability ci (which is required by ti), the problem of agent

task allocation for dynamic topology can be described as

follows.

Finding a set of agents Ar Z fa1
r ; a

2
r ;.; an

r g, where n is the

cardinality of Cti
, a1

r 2A
c1
ti

, a2
r 2A

c2
ti
;.an

r 2A
cn
ti

, so as to the

communication among a1
r ; a

2
r ;.; an

r is the minimum.

From above problem description, we can see that the

agent distribution and the network topology (e.g.

communication distance among agents) should be

considered in the task-allocation.

For example, we can suppose a task t needs four

capabilities, CtZ{C1,C2,C3,C4}. The set of agents that have

the capability c1 is: A
c1
t Z fa1; a2; a3g; the set of agents that

have the capability c2 is: A
c2
t Z fa1; a4; a6; a7g; the set of

agents that have the capability c3 is: A
c3
t Z fa5; a6; a9g;
the set of agents that have the capability c4 is:

A
c4
t Z fa2; a3; a6; a8g. All of the agents are distributed on a

network topology. To shorten the communication time

among the agents, the task should be allocated to the agents

that have the minimum communication distances. The

example can be seen in Fig. 1.
2.2. Task allocation algorithm

To describe the relation between agent and the capability

in the system, we can give the following definitions:

Definition 1. Agent-capability mapping matrix: ACZ[acij],

where acijZ1 denotes that agent i has the capability j.

To describe the agent distribution, i.e. the relation

between agent and network node, we provide the definition

of agent-node mapping matrix.

Definition 2. Agent-node mapping matrix: ANZ[anij],

where anijZ1 denotes that agent i locates on node j.

To execute a task, some agent capabilities shall be

required.

Definition 3. Task-capability mapping matrix: TCZ[tcij],

where tcijZ1 denotes that the capability j is required by

task i.

Finally, a task should be allocated to some agents. We

provide the definition of task-agent mapping matrix for

describing such relation.

Definition 4. Task-agent mapping matrix: TAZ[taij], where

taijZ1 denotes that task i is allocated to agent j.

We are mainly interested in the communication cost

among agents, so we use the shortest distance among nodes

to describe the underlying network topology.

Definition 5. Network topology matrix: NZ[nij], where nij

denotes the shortest distance between node i and j.

To make the task allocation adapt for the dynamic

topology, we can make the task allocation according to the

above matrixes. In our algorithms, we assume that there is a

manager agent who knows all of the matrixes.
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Now we realize the ideas in Section 2.1 by the

introduction of the above matrixes, shown as follows.

Algorithm 1. Task-allocation (task: t).

Step 1. Get the set of the capabilities needed by task t

from the task-capability mapping matrix TC, which can be

denoted as CZ{c1, c2,.cn}.

Step 2. For all cj2C:

Get the set Aj of the agents that has the capability cj from

the agent-capability mapping matrix AC, which is denotes

as: AjZ fa1
j ; a

2
j ;.; a

kj

j g, where kj denotes that there are kj

agents have the capability cj.

Step 4. Select a1 from A1, a2 from A2,., an from An, so

as to the total communication distances among them is the

minimum (in current network topology) according to the

agent node mapping matrix AN and the network topology

matrix N.

Step 5. Stop. Now the task T can be allocated to

fa1 ; a2 ;.; ang.

In Algorithm 1, Step 4 is very important, which shall

make the task allocation adapt for the current network

topology and agent distribution. We can express it by a

constraint satisfaction problem (CSP) (e.g. Kumar, 1992;

Liu, Jing, & Tang, 2002), shown as follows.

Let Xi be a finite set of variables, Xi Z fa1
i ; a

2
i ;.; an

i g, X

is the set of all Xi, XZA1!A2!.!An (Aj is the set of the

agents that have the capability cj). Let A be a domain set,

containing a finite and discrete domain for each variable:

A Z fA1;A2;.;Ang; c j2½1; n�; a
j
i 2Aj;

Therefore, we should find Xi, such that c(Xj2X, jsi),

the communication distances in Xj is more than the ones

of Xi.

Let a task need n capabilities, and there are k1 agents that

have capability c1, A1Z fa
i1
1 j1% i1 %k1g; k2 agents that

have capability c2, A2Z fa
i2
2 j1% i2%k2g; .and kn agents

that have capability cn, AnZ fain j1% in%kng. Step 4 in

Algorithm 1 can be realized by Algorithm 2.

Algorithm 2. Agents voting
Step 1
 Let min_com_costZmaxnumber; allocated_agen-

t_setZ{ };
Step 2
 for (int i1Z1; i1!Zk1; i1CC)

for (int i2Z1; i2!Zk2; i2CC)

N

for (int inZ1; in!Zkn; inCC)

if com_cost ða
i1
1 ; a

i2
2 ;.; a

in
n Þ !min_com_

cost

{min_com_costZ com_cost ða
i1
1 ; a

i2
2 ;.;

a
in
n Þ;

allocated_agent_set Zfa
i1
1 ; a

i2
2 ;.; a

in
n g

}

Step 3
 Output (allocated_agent_set);
The function com_cost is used to compute the total

communication distance among the selected agents, which

is shown as Algorithm 3. In Algorithm 3, an denotes the

element of agent-node mapping matrix AN, n denotes the

element of network topology matrix N.

Algorithm 3. com_cost(agents set A).
/*n1 denotes the number of agents in A, n2 denotes

the number of network nodes */
Step 1
 Let total_com_costZ0; numberZ0; x[n1]Z0
Step 2
 for (int iZ1; i!Zn1; iCC)
for (int jZ1; j!Z n2; jCC)
if anijZ1 then {x(i)Zj; numberCC};
Step 3
 for (int iZ1; i!Znumber; iCC)
for (int jZ1; j!Z number; jCC)
total_comm_costZtotal_comm._costCnx(i)x(j);
Step 4
 Return (total_comm._cost);
From Algorithm 2, we can see that the time

complexity is too high, which is O(k1*k2*,.,*kn).

Therefore, if the number of capabilities required by a

task or the agents set is too large, then the computation

cost of the algorithm will be too high. So, now we

design an improved algorithm, shown as Algorithm 4,

where C denotes the set of capabilities required by the

task, A denotes the set of agents that have the

capabilities in C. In Algorithm 4, we select the agent

that has the more number of capabilities.

Algorithm 4. Improved algorithm for agent voting
Step 1
 Let allocated_agent_setZ{ };
Step 2
 For each agent ak in the A, containerkZ0;
Step 3
 For each ci in C

For each agent aj that have ci,

If acjiZ1, then containerjCC;
Step 4
 Select the agent with the highest container, which is

denoted as agentr.
Step 5
 Let CrZ the set of capabilities that agentr has;
CZC-Cr;
AZA-agentr;
allocated_agent_setZallocated_agent_set g agentr;
Step 6
 Repeat Step 2–5, until C is empty;
Step 7
 Output (allocated_agent_set).
In Algorithm 4, we are prone to select the agents

that have more required capabilities which can make

the agent number for allocation be lessened. Therefore,

the communication cost can also be reduced accord-

ingly. Let a task needs n capabilities, and there are k1

agents that have capability c1, k2 agents that have

capability c2,.,and kn agents that have capability cn.

Obviously, the complexity of Algorithm 4 is O(n*(k1C
k2C.Ckn)), which is lower than the one of

Algorithm 2.
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3. Resource negotiation for dynamic topology networks

Each agent has different resources, and each resource

may be used by different task. We can use a vector to denote

the relation between resources and tasks, show as follows:

Ri Z f!ri1; t1O;!ri2; t2O;.;!rik;fOg

where ri1 is used by t1, ri2 is used by t2,., and resource rik is

free.

If an agent lacks the necessary resources for executing

task, then it may borrow the resources from other agents. Let

agent i want to borrow resource r from other agents and

there are several resource rs in the system, and the several

resource rs are owned by different agents and located on

different nodes. Therefore, agent i should select r from a

nearest agent according to the current network topology.

Otherwise, if agent i wants to borrow r from agent j, then

some criterions should be satisfied, such as the comparison

between their executing tasks’ priorities.

Similar to Section 2.1, there are other two binary

relations about the resource in the agent systems:
(1)
 r53A!R such that for any ai2A, rj2R, air5rj holds iff

agent ai owns the resource rj;
(2)
 r63A!R such that for any ti2T, rj2R, tir7rj holds iff

the execution of ti requires resource rj;
Next we shall use two kinds of matrixes to describe those

two relations.

We can use the agent-resource mapping matrix to

describe the relation between agent and resource.

Definition 6. Agent-resource mapping matrix: ARZ[arij],

where arijZ1 denotes that agent i has resources j.

The execution of task requires some resources, so we

provide the definition of task-resource mapping matrix.

Definition 7. Task-resource mapping matrix: TRZ[trij],

where trijZ1 denotes that task i needs the resource j.

Now we can design the agent resource negotiation,

shown as Algorithm 5. In Algorithm 5, the N denotes the

networking topology matrix, shown as Definition 5; TA is

the task-agent mapping matrix, shown as Definition 4.

Algorithm 5. Agent resource negotiation (agent i).
Step 1
 From TA, get the tasks set Ti that assigned to agent i;
Step 2
 From TR, get the resources set Ri needed by Ti;
Step 3
 From AR, get the resources set R0
i that agent i has;
Step 4
 If not R0
i JRi, then go to Step 5, else stop;
Step 5
 RZRiKR0
i;
Step 6
 From AR, get the agents set A that has the resources

set R;
Step 7
 From RN and N, select the agent set Ar that is nearest

to agent i and can lend resource to i according to

some criterions.
Step 8
 agent i borrows resources from Ar.
Step 9
 Go to step 4.
Step 7 can be described as follows:
(1)
 Ar Zf; R00Zf;

(2)
 From A, select the nearest agent an;
if an can lend some resources (Rl) to ai
then {AZAK fang;
Ar ZAr g fang;

R00ZR00gRl}
(3)
 If R00 JR then stop and return Ar;
else goto 2).
Then, how can an lend some resources to ai, and which

resource can an lend to ai? Which can be decided according

to the task priority between an and ai.

Each agent may have several resources, and each

resource may be executing a task.

For example, let an has some resource, shown as {!rn1,

tn1O,!rn2,tn2O,!rn3,FO}, which denotes that rn1 is

executing tn1, rn2 is executing tn2, and rn3 is free.

Now, let ai wants to borrow rn1 and rn3 from an.

Obviously, rn3 can be borrowed immediately since it is free;

However, rn1 cannot be borrowed immediately since it is

executing tn1. At first, we can compute the priority of the

task that an executes and tn1. If the task that an executes is

higher than the one of tn1, then ai can borrow the resource

from an.
4. Autonomous resource negotiation

by knowledge integration

In Section 3, we provide the algorithms for resource

negotiation for dynamic topology networks. Through the

algorithms in Section 3, we can select the geographical-

nearest agents for resource negotiation, therefore, the

communication cost among agents can be minimized

according to the factual network topology.

However, the algorithms in Section 3 can only be

executed by a central controlled fashion, and, the agent

cannot negotiate with each other directly.

Aiming at those situations, now we propose an

autonomous resource negotiation model. In this model, we

use a data structure to represent the agent’s knowledge

about resource distribution, and agents can integrate

individual knowledge for acquiring an enhanced knowledge

of the whole resource environment.

In our model, if an agent wants to borrow some resources

from other agents, at first it should find the information from

the resource knowledge within itself. If it cannot find the

information within itself, then we can adopt the algorithms

in Section 3.

However, each agent should know the change of network

topology. Therefore, in our autonomous negotiation mech-

anism, there is also a management station in the system
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which monitors the network topology and told the agents

about the current topology.
r4 n1 a4 t3

r1 n3 a2 ^

r6 n5 a6

(a) (b)

t1

r7 n1 a4 ^

r5 n5 a2 ^

r3 n3 a5 t2

Fig. 3. A example of agent resource knowledge.

t5a3n2r1

t5a1n2r8

^a4n1r7

t3a4n1r4

t5a1n2r8

t5a3n2r1
4.1. Knowledge representation of resource

We now provide the knowledge representation about

resource of agents, and describe how to integrate individual

agent knowledge for acquiring an enhanced knowledge of

the whole resource environment.

At the initial phase of the system, each agent only has the

knowledge about its own resources. Therefore, to know

the global knowledge about resources, agents should

integrate their knowledge periodically.

We can use the form of linked list (Ford & Topp, 1996) to

represent the agent’s knowledge about resource. The

independent items in the linked list are called rnodes,

each rnode includes four data fields and a pointer indicating

the ‘next’ item in the list. The rnode structure is shown as

Fig. 2, where name denotes the name of resource, location

denotes the network node where the resource locates,

ownership denotes the agent that the resource is owned

by, executing task denotes the task that the resource is

used by.

In the list within an agent, the rnodes are ordered by the

distance of the resource from the agent, and the nearest

resource is at the head of the list. Therefore, if an agent

wants to borrow resource from other agents, it can select the

first rnode in the list that owns the resource and the priority

of executing task is lower than the agent’s task.

For example, Fig. 3(a) shows the resource knowledge of

agent a1, and Fig. 3(b) shows the resource knowledge of

agent a2.

If a1 lacks resource r1 while it executes its task, it shall

search the resource information in its resource knowledge.

In its linked list, there are two r1. The r1 owned by a3 is

the nearest and the priority of t5 is lower than the priority of

the task executed by a1, so a1 can borrow r1 from a3.

If a2 lacks resource r1 while it executes its task, it at first

searches its linked list. However, there is no information

about r1 in its linked list. Therefore, now we should adopt

the algorithms in Section 3, i.e. the central controlled

fashion.
Typedef struct node{ 

elementtype1 name; 

elementtype2 location; 

elementtype3 ownership; 

elementtype4 executingtask; 

struct node *next; 

} rnode; 

rnode resource[n];

Fig. 2. The rnode structure.
4.2. Integration of agent resource knowledge

As said above, in the initial phase of the multi-agent

system, each agent only has the knowledge about its own

resources. To achieve the global resource distribution

information, agents need to integrate their resource

knowledge. The integration of resource knowledge can be

realized under the way that each agent broadcasts

its resource knowledge to the agents on geographical

neighboring nodes periodically. Then the agent can

integrate the resource knowledge and arrange the

linked list according to its information about the network

topology from the management station. As the time going,

agents can achieve the global information about resources

step by step.

Therefore, the knowledge integration about resources

of the two agents is shown in Fig. 4. Fig. 4(a) is the

integrated resource knowledge in a1, Fig. 4(b) is the one

in a2. In Fig. 4(a) or (b), the rnodes is arranged

according to the distance of the resource from a1 (or a2),

the rnode for the nearest resource is at the head of the

linked list.
t3a4n1r4

^a2n3r1

t2a5n3r3

t1a6n5r6

^a2

(a) (b)

n5r5

^a2n3r1

^a4n1r7

^a2n5r5

t2a5n3r3

t1a6n5r6

Fig. 4. The resource knowledge after integration.
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In the integration of resource knowledge, we mainly

adopt the inserting operation. Therefore, the time

complexity of the integration is O(n).

Each time the network topology is changed, the

management station can probe the current topology and

broadcast the topology information to all agents, and the

agents then re-arranged their linked lists.
5. Case studies and performance analyses
5.1. A case

To simulate the dynamic network topology, we can

consider a M!N grid, and the edges in the grid can always

change. The communication among agents can only go

along the horizontal or vertical directions. We can realize

our multi-agent coordination model in these case studies,

and make analyses for the cases, so as to testify the

effectiveness of our model.

Fig. 5 is the simulated agent system environment. Let

there is a 30!30 grid, and the distance of all edges are

the same. We can assume the distance of each edge is d.

And the communication cost is the function of d. The

more d is, the more the communication cost is. We put

some agents having different capabilities into the grid

randomly.
5.2. Task allocation

From Fig. 5, the agent-capability mapping matrix is

shown as (1):
A

Fig. 5. A simulated agent s
1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1 0

0 1 0 1 1 0 0 0 0

0 1 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0

1 1 1 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(1)

The dimension of agent-node mapping matrix of the

agent system in Fig. 5 is too large, which is 12!90, so

now we do not list the whole matrix for saving space,

but only list some elements for the agent location, show

as (2).

an7;43 Z 1 an11;93 Z 1 an5;203 Z 1 an1;218 Z 1

an6;341 Z 1 an2;347 Z 1 an9;395 Z 1 an3;557 Z 1

an4;577 Z 1 an8;738 Z 1 an10;779 Z 1 an12;790 Z 1

(2)

The network topology matrix NZ[nij], if the location

of node i is denoted by coordinates (m1,n1) in the grid,

and the location of node j is denoted by (m2,n2) in the

grid, then there is:

nij Z jm2 Km1jC jn2 Kn1jK1 (3)
{c1,c2} {r2,r3,r6,r7}

{c1,c2,c4}

{c3}

{c2,c6,c7}

{c4,c5}

{c2,c3,c4}

{c8,c9}

{c6,c7,c8}

{c2,c4,c5}

{c2,c3}

{c2,c4,c8}

{c1,c2,c3}

gents

Capabilities Resources

{r2,r4,r8,r9}

{r1,r3,r5,r7}

{r2,r4}

{r3,r8,r9,r10}

{r1,r2,r3,r7}

{r3,r7,r8}

{r4,r7,r10}

{r2,r3}

{r3,r4,r5,r8,r9}

{r1,r4,r7,r10}

{r4,r5,r6}

ystem environment.
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Now let there are 10 tasks that the system shall

execute, and each task needs some capabilities, and the

task-capability mapping matrix is shown as (4).

1 0 0 0 0 0 0 1 1

0 0 1 1 0 1 0 0 1

0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0

0 1 0 1 0 1 0 1 0

1 0 0 1 0 0 1 0 0

0 1 0 1 0 1 0 0 0

1 0 0 1 0 0 1 0 0

0 1 1 1 0 0 1 0 1

1 0 0 1 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

(4)

Now we consider the task allocation for task t5.

According to (4), we can see that t5 needs the

capabilities set {c2,c4,c6,c8}. From (1), the agents sets

that respectively has the capability c2, c4, c6, c8 are A2,

A4,A6,A8.

A2 Z fa1;a2;a4;a6;a9;a10;a11;a12g A4 Z fa2;a5;a6;a9;a11g

A6 Z fa4;a8g A8 Z fa7;a8;a11g

(5)

Now we can use Algorithm 2 to make the task

allocation, then the agents set of task allocation is:
{a2,a8}. Scheme (1)

If we use Algorithm 4 to make the task allocation, then

the agents set of task allocation is:
{a11,a4}. Scheme (2)

Otherwise, we also give some random task allocation

schemes, shown in Table 1. Let the agents in the task

execution implement fully mutual communications, and

then we can compute the communication cost of the

schemes. We can assume the communication cost of each

step in the grid is d.

According to (2) and (3), the shortest distance between a6

and a8 is 14, so the communication cost of Scheme (1) is

14d; the shortest distance between a11 and a4 is 19, so the

communication cost of Scheme (2) is also 19d.
Table 1

Performance comparison among different Schemes (1)

Scheme Com_cost Scheme Com_cost

{a2,a8} 14d {a6,a8} 19d

{a11,a4} 19d {a9,a8} 24d

{a1,a2,a4,a7} 87d {a4,a7,a5} 65d

{a2,a5,a8,a7} 100d {a8,a11} 36d

{a2,a5,a8} 45d {a4,a7,a9} 48d
Under the same way, we can compute the communi-

cation costs of other random schemes, the results are shown

in Table 1. For example, the fully mutual communications

of the scheme {a2, a5, a8} are {a24a5, a24a8, a54a8}.

The shortest distance between a2 and a5 is 10d, the shortest

distance between a5 and a8 is 13d, and the shortest distance

between a2 and a8 is 22d. Therefore, the communication

cost of scheme {a2, a5, a8} is 45d.

From Table 1, we can see that the communication costs

of Scheme (1), (2) are lower than the ones of other random

schemes. Therefore, our model can produce the optimal task

allocation scheme.
5.3. Resource negotiation

Now we take an example to illustrate the process of

resource negotiation. We consider the optimal task

allocation scheme in Section 5.2, i.e. {a2, a8}.

Let (6) be an agent-resource mapping matrix in the

system, and (7) is the task-resource mapping matrix.

1 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 1 1 0

1 0 1 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 1 1

1 1 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 1 0 0

0 0 0 1 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

0 0 0 1 1 1 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(6)

1 0 1 1 1 0 1 1 1 0

0 1 1 0 1 1 1 1 0 0

0 1 1 0 1 1 1 1 1 0

1 0 1 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 0 1 0

0 1 1 1 1 0 1 0 1 0

0 1 1 0 0 1 1 1 0 0

0 1 1 1 1 1 0 1 1 1

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

(7)

From (7), we can see that task t5 needs the resources {r1,

r2, r3, r5, r6, r7, r8, r9, r10}. However, from (6), we can see

that agent a2 and a8 only have the resources {r2, r4, r7, r8, r9,



Fig. 7. Network topology and agent distribution (3).

Fig. 6. Network topology and agent distribution (2).

Table 2

Performance comparison among different schemes (2)

Scheme Com_cost Scheme Com_cost

{a1,a11,a4} 25d {a12,a9,a8} 32d

{a2,a4} 28d {a1,a5,a4} 53d

{a2,a8} 31d {a2,a9,a8} 60d

{a8,a9,a12} 31d {a12,a9,a4} 51d

{a1,a2,a4} 63d {a2,a9,a4} 71d
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r10}. Therefore, they shall make resource negotiation with

other agents to borrow the resources {r1, r3, r5, r6}.

Now we let the task-agent mapping matrix be shown as

(8), and we also assume the priorities of the tasks is as

follows: t1_ t2 _ t3_ t4_ t5_ t6_ t7_ t8_ t9 _ t10.

1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 1 1 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

(8)

The agents set that have the resources {r1, r3, r5, r6} is

{a1, a3, a5, a6, a7, a9, a10, a11, a12}, which can be called as Ä.

Now we can define the distance between an agent aj and

Ä, shown as (9).

dð €A; ajÞ Z min
ai2€A

½dðai; ajÞ� (9)

where d(xi,xj) denotes the shortest path distance between xi

and xj.

According to the agent-node mapping matrix and the

network topology, the agents set Ä can be arranged

according to the distances to {a2, a8} (computed according

to (9)), shown as {a6, a3, a12, a5, a10, a1, a7, a9, a11}.

According to (8), a6 is allocated with t1, t3, and t7.

The priority of t1 is higher than t5, therefore, a6 cannot lend

the resources to a2 and a8. The priority of the tasks allocated

to a3 is lower than t5, therefore, a3 can lend the resources

{r1, r3, r5}.

Now, {a2, a8} only need to borrow r6 from other agents.

The agents set that has the resource r6 can be arranged

according to their distances to {a2, a8} as {a12, a1}. The task

that is allocated to a12 is t9 whose priority is lower than the

one of t5, therefore, a12 can lend the resource r6 to a2 and a8.

Therefore, a2 and a8 can borrow the resources {r1, r3, r5,

r6} from {a3, a12}. Obviously, the communication cost for

resource negotiation of this scheme is the minimum.

Therefore, our algorithms can achieve the optimal result.

As far as the autonomous resource negotiation mechan-

ism in Section 4, it selects the nearest resource for

negotiation in the linked list. Therefore, the communication

cost is sure to be the minimum. For saving space, here we do

not make case studies for the autonomous negotiation

mechanism.
5.4. Performance analyses of task allocation for the

changed network topologies and agent distributions

Now we analyze the performance of our task allocation

for the changed network topologies and agent distributions.

Since the analysis of the performance of resource

negotiation is similar to the one of task allocation, so here

we overlook it.

Now we change the topology of the grid and the agent

distribution, and test our algorithms of task allocation. The

grid topology and the agent distribution are shown as Fig. 6.

Now, we assume t8 arrives to the system, according to

Algorithm 2 in Section 2.2, the agents set of task allocation

is {a1,a11,a4}; according to Algorithm 4, the agents set of

task allocation is {a2,a4}. Now we can make some random

task allocation schemes, shown in Table 2. Then, we

compare the communication costs between the constructed

task allocation schemes and other random task allocation

schemes, shown as Table 2.



Fig. 8. Network topology and agent distribution (4).
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Fig. 10. Summary of the performance comparison.

Table 3

Performance comparison among different schemes (3)

Scheme Com_cost Scheme Com_cost

{a2,a8} 15d {a2,a4,a11} 27d

{a1,a8} 19d {a1,a4,a8} 37d

{a12,a8} 24d {a1,a4,a7} 61d

{a2,a4,a8} 35d {a1,a4,a11} 41d

{a2,a4,a7} 58d {a12,a4,a11} 35d

Fig. 9. Network topology and agent distribution (5).

Table 5

Performance comparison among different schemes (5)

Scheme Com_cost Scheme Com_cost

{a12,a7} 5d {a2,a8,a7} 37d

{a1,a7} 7d {a2,a11,a7} 23d

{a2,a7} 7d {a12,a8,a7} 43d

{a1,a8,a7} 45d {a12,a11,a7} 17d

{a1,a11,a7} 15d
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Now, we change the network topology and agent

distribution, shown as Fig. 7. We assume t4 arrives to the

system, according to Algorithm 2 in Section 2.2, the agents

set of task allocation is {a2,a8}; according to Algorithm 4,

the agents set of task allocation is {a1,a8}. Now we can

compare the communication costs between the constructed

task allocation schemes and other random task allocation

schemes, shown as Table 3.

Now, we change the network topology and agent

distribution, shown as Fig. 8. We assume t10 arrives to the

system, according to Algorithm 2 in Section 2.2, the agents

set of task allocation is {a2}; according to Algorithm 4, the

agents set of task allocation is also {a2}. Now we can

compare the communication costs between the constructed

task allocation schemes and other random task allocation

schemes, shown as Table 4.

Now, we change the network topology and agent

distribution, shown as Fig. 9. We assume t1 arrives to the

system, according to Algorithm 2 in Section 2.2, the agents

set of task allocation is {a12,a7}; according to Algorithm 4,

the agents set of task allocation is {a1,a7}. Now we can

compare the communication costs between the constructed

task allocation schemes and other random task allocation

schemes, shown as Table 5.
Table 4

Performance comparison among different schemes (4)

Scheme Com_cost Scheme Com_cost

{a2} 0 {a1,a5} 4d

{a1,a6} 30d {a1,a9} 19d

{a1,a11} 10d {a12,a5} 23d

{a12,a6} 9d {a12,a9} 21d

{a12,a11} 16d
Now we combine the results of all of above cases, shown

as Fig. 10. In Fig. 10, the Y-coordinate denotes the

communication cost, and the X-coordinate denotes the

number of cases. From Fig. 10, we can see that

the communication costs of the schemes produced by our

algorithms are the minimum. Therefore, our model can

produce the optimal task allocation schemes.
6. Conclusion

Coordination mechanism is widely explored in multi-

agent systems. Especially, the task allocation and resource

negotiation are the key issues in the research of agent

coordination.

Nowadays, the topologies of networks are always

changed during their operations, therefore, the multi-agent

systems on such networks shall adapt themselves for
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the network topology. However, the existing multi-agent

coordination mechanisms do not have such adaptation

ability. In this paper, we explore the agent task allocation

and resource negotiation, and provide some algorithms to

make the agents coordinate themselves for the network

topology. In the provided algorithms, the factors of network

topology and agent distribution are considered. The

algorithms can realize the effective task allocation and

resource negotiation according to the current network

topology, and the optimal result for agent communication

cost can be achieved.

At last, we make some case studies, and make

analyses for the algorithms when the network topology

and agents distribution are changed. From the case

studies and the performance analyses, we conclude that

our algorithms can perform well in the dynamic

networks.
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