
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022 9683

On Security of TrustZone-M-Based IoT Systems
Lan Luo , Yue Zhang , Clayton White, Brandon Keating , Bryan Pearson, Xinhui Shao,

Zhen Ling , Member, IEEE, Haofei Yu, Cliff Zou , Senior Member, IEEE,
and Xinwen Fu, Senior Member, IEEE

Abstract—Internet of Things (IoT) devices have been increas-
ingly integrated into our daily life. However, such smart devices
suffer a broad attack surface. Particularly, attacks target-
ing the device software at runtime are challenging to defend
against if IoT devices use resource-constrained microcontrollers
(MCUs). TrustZone-M, a TrustZone extension designed specif-
ically for MCUs, is an emerging hardware security technique
fortifying software security of MCU-based IoT devices. This
article introduces a comprehensive security framework for IoT
devices using TrustZone-M-enabled MCUs, in which device secu-
rity is protected in five dimensions, i.e., hardware, boot-time
software, runtime software, network, and over-the-air (OTA)
update. Along developing the framework, we also present the
first security analysis of potential runtime software security
issues in TrustZone-M-enabled MCUs. In particular, we explore
the feasibility of launching stack-based buffer overflow (BOF)
attack for code injection, return-oriented programming (ROP)

Manuscript received April 12, 2021; revised October 15, 2021 and
December 11, 2021; accepted January 3, 2022. Date of publication
January 19, 2022; date of current version June 7, 2022. This work was
supported in part by the National Key Research and Development Program
of China under Grant 2018YFB0803400 and Grant 2018YFB2100300; in
part by the U.S. National Science Foundation (NSF) under Award 1931871,
Award 1915780, and Award 1643835; in part by the U.S. Department
of Energy (DOE) under Award DE-EE0009152; in part by the
National Natural Science Foundation of China under Grant 62022024,
Grant 61972088, Grant 62072103, and Grant 62072098; in part by the
Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars
under Grant BK20190060; in part by the Jiangsu Provincial Key Laboratory
of Network and Information Security under Grant BM2003201; in part
by the Key Laboratory of Computer Network and Information Integration
of Ministry of Education of China under Grant 93K-9; and in part by
the Collaborative Innovation Center of Novel Software Technology and
Industrialization. (Corresponding author: Zhen Ling.)

Lan Luo, Bryan Pearson, and Cliff Zou are with the Department of
Computer Science, University of Central Florida, Orlando, FL 32816
USA (e-mail: lukachan@knights.ucf.edu; bpearson@knights.ucf.edu;
czou@cs.ucf.edu).

Yue Zhang was with the Department of Computer Science, University of
Massachusetts Lowell, Lowell, MA 01854 USA. He is now with the College
of Information Science and Technology, Jinan University, Guangzhou 510632,
China (e-mail: zyueinfosec@gmail.com).

Clayton White was with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL 32816 USA.
He is now with Google, Chicago, IL 60607 USA (e-mail: clayton-
white@knights.ucf.edu).

Brandon Keating was with the Department of Electrical and Computer
Engineering, University of Massachusetts Lowell, Lowell, MA 01854 USA.
He is now with Globus Medical, Audubon, PA 19403 USA (e-mail:
brandon_keating@student.uml.edu).

Xinhui Shao and Zhen Ling are with the School of Computer Science
and Engineering, Southeast University, Nanjing 210096, China (e-mail:
xinhuishao@seu.edu.cn; zhenling@seu.edu.cn).

Haofei Yu is with the Department of Civil, Environmental and Construction
Engineering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
haofei.yu@ucf.edu).

Xinwen Fu is with the Department of Computer Science, University
of Massachusetts Lowell, Lowell, MA 01854 USA (e-mail: xinwenfu@
cs.uml.edu).

Digital Object Identifier 10.1109/JIOT.2022.3144405

attack, heap-based BOF attack, format string attack, and attacks
against nonsecure callable (NSC) functions in the context of
TrustZone-M. We validate these attacks using SAM L11, a
microchip MCU with TrustZone-M and provide defense mech-
anisms in the runtime software dimension of the proposed
framework. The security framework is implemented with a full-
fledged secure and trustworthy air quality monitoring device
using SAM L11 as its MCU.

Index Terms—Internet of Things (IoT), software security,
TrustZone.

I. INTRODUCTION

INTERNET of Things (IoT) has been deployed in a wide
range of application domains, including home appliances,

medical instruments, smart buildings, industrial automation,
and smart environment. In this article, we focus on IoT
devices that use low-cost and resource-constrained micro-
controllers (MCUs) and can communicate with the outside
world through venues, such as WiFi, Bluetooth, NB-IoT
and LoRa. The attack surface of such IoT devices includes
data, networking, hardware, software, and firmware/operating
systems [1], among which we are particularly interested in
runtime software security of MCUs. Even if software integrity
and authenticity can be verified at boot time via mechanisms
such as secure boot, protecting software of embedded devices
at runtime remains challenging due to the heterogeneity and
constrained computational resources of MCUs [2]–[4].

TrustZone-M, the TrustZone extension for ARMv8-M archi-
tecture, is an emerging solution to the runtime software secu-
rity of IoT devices [5]–[7]. Specifically, it provides resource-
constrained MCUs a lightweight hardware-based solution to a
trusted execution environment (TEE) for security-related soft-
ware, i.e., the secure world (SW), which is isolated from the
rich execution environment (REE), i.e., the nonsecure world
(NSW), at the hardware level. The NSW software cannot
access the SW resources directly. Instead, TrustZone-M pro-
vides a nonsecure callable (NSC) memory region in the SW so
that functions can be defined in the NSC region as the gateway
from the NSW to the SW.

In this article, we address the issues in securing
TrustZone-M-based IoT devices and make the following
major contributions. We propose a security framework for
TrustZone-M-enabled IoT devices. The framework is designed
from five dimensions, including hardware, boot-time software,
runtime software, network, and over-the-air (OTA) updates.
Care has to be taken to defeat various side-channel attacks
(SCAs) existing in all IoT system components [8]–[11].

We are the first to perform a comprehensive security anal-
ysis of the runtime software security in TrustZone-M-enabled

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5627-3521
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0001-7573-4912
https://orcid.org/0000-0001-9691-8702
https://orcid.org/0000-0003-4229-6957

9684 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

IoT devices, and we present potential software attacks
against TrustZone-M. The SAM L11 MCU from Microchip
uses the ARM Cortex-M23 processor with the TrustZone
technology [12] and is employed as an example in this article
to demonstrate the principles, while our methodologies can be
extended to other similar products. We validate these attacks
on SAM L11 and find that even the official coding demos
of SAM L11 contain security vulnerabilities. We demonstrate
how the code injection attack, code reuse attack (CRA), heap-
based buffer overflow (BOF) attack, format string attack, and
attacks against NSC functions may compromise TrustZone-M,
while some of these attacks are common on other platforms,
such as Linux, Windows, and MacOS.

We are the first to design and implement an image-based
address space layout randomization (ASLR) scheme for IoT
devices, denoted as image-based ASLR (iASLR). iASLR is
unique since it relocates an image every time the device boots
while the image layout is randomized only one time in the
related work [13]. We design the static code patching and
control flow correction schemes to tackle the addressing issues
caused by image relocation.

We implement a secure and trustworthy air quality monitor-
ing device, called STAIR, with a TrustZone-M-enabled MCU
to demonstrate the proposed security framework. In particular,
we demonstrate the use of nonexecutable RAM and data flash,
secure NSC functions, and control flow integrity (CFI) for the
overall system security of TrustZone-M-enabled IoT devices.

We evaluate the attacks using real-world examples and show
even the example software projects provided by Microchip
have vulnerabilities. We also present the performance of
STAIR such as the cryptographic operation overhead.

A conference version published previously [14] mainly
focuses on analyzing the runtime software security issues and
potential attacks of TrustZone-M-based MCUs. Compared to
the conference version, we discuss the overall security of
TrustZone-M-based IoT devices in this article. To address the
security issues, we propose a comprehensive security frame-
work and implement an air quality monitoring device for
demonstration.

The remainder of this article is organized as follows. We
introduce the background knowledge on ARM TrustZone-M
technique, TrustZone-M enabled MCUs, and runtime secu-
rity issues of IoT devices in Section II. In Section III, a
security framework for TrustZone-M-based IoT devices with
five dimensions is presented. We then illustrate five types
of practical attacks against runtime software of TrustZone-M
in Section IV. An implementation of STAIR device using
the security framework is described in Section V and we
introduce our iASLR scheme—iASLR—in Section VI. The
evaluation of the runtime software attacks and implemented
STAIR device is presented in Section VII. We present related
work in Section VIII and conclude this article in Section IX.

II. BACKGROUND

A. TrustZone for Armv8-M

TrustZone for ARM Cortex-A processors (TrustZone-A) is
a hardware-based security technology that isolates security-
critical resources (e.g., secure memory and related peripherals)

from rich OS and applications. An ARM system on a chip with
the TrustZone extension is split into two execution environ-
ments referred to as the SW and the NSW. Software in the
SW has a higher privilege and can access resources in both the
SW and the NSW, while the nonsecure software is restricted
to the nonsecure resources. Switching between the two
worlds is implemented with the secure monitor mode of the
processor.

Recently, the TrustZone technology has been extended to
the ARMv8-M architecture as TrustZone-M for some ARM
Cortex-M processors, which are specifically optimized for
resource-constrained MCUs. TrustZone-M has the SW and
NSW, but differs from TrustZone-A in terms of implementa-
tion. One prominent difference is that TrustZone-M introduces
a special memory region in the SW named NSC region to pro-
vide services from the SW to the NSW. Transitions between
the two worlds through the NSC region are achieved by NSC
function calls and returns.

To distinguish from general secure and nonsecure objects,
in the rest of this article, we use terms secure and nonsecure
to specifically describe resources in the SW and NSW.

B. SAM L11

In July 2018, Microchip announced the first TrustZone
enabled MCU with the name of SAM L11. Equipped with
Cortex-M23 core and TrustZone-M security extension, this
chip is described as the lowest power 32-bit MCU in the indus-
try that ensures robust hardware-based security at the same
time.

Security Features: Besides TrustZone-M, SAM L11 offers
multiple optional security features, including secure boot,
hardware cryptoaccelerator, true random number generator,
secure pin multiplexing, secure data flash, and TrustRAM.

Non Volatile Memory (NVM) Rows: NVM rows are secure
memory regions containing critical system configuration fuses,
which are used by the system at boot time. Security-related
NVM rows include boot configuration row (BOCOR) for
boot security configurations and user row (UROW) for other
security related configurations. The NVM rows can only be
updated by secure access and will not take effect until a
reboot.

Memory Layout: Taking ATSAML11E16A, the top model
of SAM L11, as an example, it has a 64-kb code flash for soft-
ware images, a 16-kb SRAM for volatile data, and a 2-kb data
flash for nonvolatile user data. Fig. 1 illustrates the memory
mapping of SAM L11. Due to the existence of TrustZone-M,
memory in SAM L11 can be divided into the SW and NSW at
hardware level. While the starts and ends of code flash, SRAM,
and data flash are fixed addresses, starts of NSC flash, non-
secure code flash/SRAM/data flash are modifiable and can be
defined in UROW.

C. Runtime Software Security in IoT Devices

MCU-based IoT devices are often programmed with lan-
guages, such as C and C++, because they are compact,
highly efficient, and have the ability of direct memory con-
trol [15]. Such languages provide programmers a flexible
platform to interact with the low-level hardware directly.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9685

TABLE I
SECURITY FRAMEWORK FOR TRUSTZONE-M-ENABLED IOT DEVICES

Fig. 1. Memory layout of ATSAML11E16A.

On the flip side, they are notoriously error prone and
daunted by security issues. Attackers may perform runtime
software attacks against vulnerable IoT devices with such
features.

Runtime software attacks aim at hijacking the program con-
trol flow by altering the control data (e.g., return address and
function pointer) or changing program memory by manip-
ulating noncontrol data [2]. Often in such an attack, an
adversary corrupts the vulnerable memory by injecting a care-
fully crafted malicious payload, which eventually results in
abnormal program behaviors.

Unlike computers or smartphones allowing authorized users
to use user-defined applications, software in most IoT prod-
ucts is relatively fixed and can be modified only if a software
update is required by the manufacturers. The relatively fixed
software brings IoT devices stability, though on the flip side,
the homogeneity of software means that a software exploit
found in one device may also exist in hundreds and thousands
of similar devices. As a result, large-scale attacks are prone to
take effect.

III. SECURITY FRAMEWORK FOR

TRUSTZONE-M-ENABLED

IOT DEVICES

TrustZone-M is employed to provide IoT devices a TEE
in order to ensure runtime security of software inside the
SW. However, most of the device’s functionalities unrelated to
security are usually achieved in the REE, namely, the NSW.
Compared to the SW, the NSW contains most of the pro-
gram code and tends to communicate with the outside world
much more frequently through different interfaces, and there-
fore, are more likely to be attacked. To maintain the security
state of an IoT device during its lifetime, security principles
and other defense mechanisms should work compatibly with
TrustZone-M to provide full-scale protection. In this section,
we propose a security framework, as presented in Table I, for
TrustZone-M-based IoT devices, protecting devices according
to five dimensions in terms of hardware, boot-time software,
runtime software, network, and OTA update.

A. Hardware Security

To satisfy different demands for collecting varied ambient
measurements, many IoT devices have to be deployed in open
environments, hence, are physically exposed to the public.
Devices that can be touched by adversaries, and have not been
designed securely from the perspective of device hardware,
tend to be extremely assailable to attacks. IoT devices usu-
ally provide hardware interfaces for software debugging and
updates. Such programming interfaces can be categorized into
debug ports and serial bootloader ports. An open debug port,
such as serial wire debug (SWD) for ARM processors and joint
test action group (JTAG) for many other integrated chips, will
allow external access to the chip’s memory contents, e.g., code,
on-device data, registers, system configurations, and security
keys for debugging and programming purposes. Besides debug
ports, a serial bootloader, which uses a serial port, such as a
universal asynchronous receiver/transmitter (UART) or serial
peripheral interface (SPI) for updating software locally, is uni-
versal in MCU-based devices. Depending on the designs of
the bootloader and transmission protocols, software might be
read or overwritten through the serial ports. Therefore, mea-
sures should be taken to secure such programming ports from
unauthorized access.

A TrustZone-M-enabled device suffers from the hardware
interface attacks as well. Relying on the access privileges
of the ports, attackers may compromise secure or nonsecure

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9686 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

software. Using a security key to secure the communica-
tion through the interfaces is a common way to filter out
unauthorized access. In practice, different groups may be
granted different privileges of accessing memory contents.
For instance, an original equipment manufacturer (OEM) is
able to access both the SW and NSW through the hardware
interfaces, while a third party may only be allowed to access
the Nonsecure applications for security concerns. Therefore,
it is necessary to use at least two keys to distinguish the dif-
ferent access privileges. That is, users with higher privilege
can access both the SW and NSW, while users with lower
privilege can only access the NSW.

In addition to programming interfaces, hardware ports, such
as UART, I2C, and SPI, that receive data from other peripher-
als might be attacked if data are maliciously manipulated by
adversaries and specific vulnerabilities exist in the software.
Since such attacks highly depend on bugs in the software and
how the software can be exploited, we will discuss them later
in Sections III-C and IV.

B. Boot-Time Software Security

Software should be validated before being loaded and exe-
cuted at device’s boot time so that any alteration of the
software can be detected. Usually secure boot works as the root
of trust for IoT devices, making sure that the software is from
the OEM and starts the execution in the normal state. The work
flow of secure boot begins with a trusted piece of code (which
is usually write protected, e.g., Boot ROM and efuse) as the
root of trust, which will validate other programs to be exe-
cuted. Devices enabled by TrustZone-M require such trusted
code to verify the integrity and authenticity of all nonvolatile
memory in both the SW and NSW.

C. Runtime Software Security

Runtime software security is a critical issue for IoT devices,
for which C or C++ is a preferable programming lan-
guage. Coarsely programmed C or C++ software may contain
memory corruption errors and is naturally fragile to soft-
ware attacks, such as program crash, data leakage, control
flow hijack, and firmware altering. Though TrustZone-M is
designed to protect runtime execution inside the SW, soft-
ware attacks may occur in the NSW, or even in the SW if the
secure applications are not programmed in a correct way. In
Section IV, we demonstrate in detail how such attacks could
occur in TrustZone-M-enabled devices, and how they could
compromise system security.

D. Network Security

In the context of IoT, devices are connected to the cloud
or other devices via the Internet. Data transmitted through the
network must be carefully protected in case of cyber attacks,
such as man-in-the-middle attack, eavesdropping attack, replay
attack, etc. To overcome the network security issues, secure
communication protocols, such as hypertext transfer protocol
secure (HTTPS) and message queuing telemetry transport over
TLS (MQTTS), should be used so that servers and clients are
authenticated before the connection is established, the integrity

of messages is checked upon being received, and network
traffic is encrypted during transmission.

E. Over-the-Air Update

OTA update is the process of distributing new software from
the cloud to deployed IoT devices for updates. During this
process, transmission should be encrypted so that the soft-
ware would not be eavesdropped; authentication is required in
order to confirm the downloaded contents are delivered from
trusted sources; and integrity must be verified to avoid miss-
ing or tampered packets. As we discussed in Section III-D,
employing secure network protocols is the solution.

Firmware rollback or downgrade attack [16] is another
exploit existing in many OTA implementations aiming at
bypassing the authentication mechanism using an old firmware
with a valid signature so that adversaries can exploit bugs
existing in the old firmware for further attacks. Intuitively, this
issue can be addressed by comparing the version of firmware
to be updated with the version of the current on-device
firmware once new firmware is downloaded. The recorded
current firmware version has to be stored in secure memory
that can be accessed by trusted applications only. For exam-
ple, once a new firmware is just delivered from the cloud and
stored temporarily in spare memory, the OTA module needs
to first verify its digital signature to make sure the integrity
and authenticity of the firmware and the version value were not
being compromised. If the signature is valid, the version value
will be compared to the current version stored in the secure
memory, and the firmware will be overwritten by the new
firmware only if the new version value is larger than the
current version.

In general, a secure OTA procedure consists of two stages,
i.e.: 1) downloading new software through secure commu-
nication protocols and 2) validating the signature and ver-
sion before overwriting the current software. The first stage
involves secure network protocol that has been discussed in the
previous section. Considering OTA update is closely relevant
to the security of on-device software, a TrustZone-M-based
MCU should embed OTA related software inside the SW.
Moreover, both the secret key for verifying the signature and
the current firmware version must be preserved in the SW or
other secure memories to prevent possible leakage or attacker’s
modification.

F. Defense Against Side Channel Attacks

A side channel may exist in any components, includ-
ing hardware, software, and networking of an IoT system.
Sensitive information may be derived from timing of network
packets, power consumption of cryptographic circuit, and
electromagnetic radiation. To defeat side-channel attacks, we
may try to eliminate side channels and reduce the leakage,
for example, using special shielding to reduce electromag-
netic emissions. Statistic strategies, such as randomization
and delay, may be used to remove or lessen the rela-
tionship between the leaked information and the sensitive
data [17].

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9687

IV. RUNTIME SECURITY OF TRUSTZONE-M

In this section, we first introduce the threat model on how a
TrustZone-M-enabled IoT device may be attacked. We then
present five runtime software attacks against TrustZone-M-
enabled IoT devices. We use the SAM L11 MCU as the exam-
ple while the principle is the same for all TrustZone-M-enabled
devices.

A. Threat Model

We consider a victim IoT device using a TrustZone-M-
enabled MCU. In such a device, the application image consists
of an app in the SW (Secure app), app in the NSC region (NSC
app), and app in the NSW (NS app). We will focus on runtime
software security in this section. That is, it is assumed that the
adversary tries to compromise a target device through runtime
software attacks.

We also assume that the attacker cannot alter application
code on the flash, which can be set as a nonwritable through
memory protection unit (MPU). However, the adversary can
obtain the application binary code, e.g., through purchasing a
device and disassembling it to understand the code and find
the programming errors and software vulnerabilities.

It is assumed that security-related coding mistakes exist in
the software of the victim device, which is able to receive
inputs from the Internet or peripherals. Though the SW of
TrustZone-M is designed for providing a TEE that the NSW
software cannot access directly, the TEE can only function
normally under the assumption that secure software is well
crafted with no security-related coding mistakes. However,
coding mistakes may exist in TrustZone-M’s NSW, the NSC
region, and the SWX region when software development in
these regions is available. Even if the SW does not accept
inputs from the Internet or peripherals and only the NSW
communicates with the outside world, an attacker may com-
promise the NSW and feed malicious inputs into vulnerable
NSC functions, which can access secure resources. Therefore,
a vulnerable NSC function may lead to the entire SW to be
compromised.

The ultimate goal of the adversary discussed here is to
hijack the control flow or manipulate data so as to control
the IoT device. To achieve such a goal, the adversary may
want to send malicious payloads to the device and exploit
programming errors in its software.

B. Runtime Software Attacks

Table II lists software attacks we have identified against the
NSW, NSC, and SWX of TrustZone-M. It can be observed that
traditional software attacks found in other platforms, such as
computers and smart phones, can be conducted in all regions
of TrustZone-M, including code injection, return-oriented pro-
gramming (ROP), heap-based BOF, and format string attacks,
if requisite software flaws are present. We also discover poten-
tial exploits specifically targeting the NSC. Here, all attacks
against the NSC refer to those deployed from the NSW. We
present the details and challenges of these attacks in the
context of TrustZone-M as follows.

TABLE II
SOFTWARE ATTACKS IN TRUSTZONE-M

Listing 1. Example of a function with BOF vulnerability.

Fig. 2. Stack-based BOF attack for code injection.

1) Stack-Based Buffer Overflow Attack for Code Injection:
The stack-based BOF is a canonical memory corruption attack
that occurs on the stack when a larger input is written to a
local buffer without checking the buffer’s boundary. Listing 1
presents an example, in which buf[256] will overflow if the
input array is longer than 256 bytes. As a result, the extra
data will overwrite the adjoining stack contents including the
return address, at which the control flow will continue after the
subroutine return. Adversaries may perform stack-based BOF
attack for malicious code injection. The control flow can be
redirected to the malicious code sent along with the payload
by overflowing the local buffer and overwriting the original
return address with the entry address of the malicious code.

To specifically implement a stack-based BOF attack against
the ARMv8-M architecture, we first investigate its stack struc-
ture. A stack frame for a function in ARMv8-M consists
of local variables, variable registers (R4–R7), and a return
address, as illustrated in Fig. 2. By exploiting functions
with BOF vulnerabilities, an adversary is able to copy a
crafted payload to the buffer, overwrite the return address,
and inject malicious code onto the stack. While construct-
ing the malicious payload, the adversary needs to know the
entry of the malicious code on the stack. A common solu-
tion is to utilize the JMP SP instruction presenting in the
device’s firmware [18]. Even if there is no such instruction
in the firmware, an adversary may enumerate possible entry
addresses of malicious code to find the correct one. A wrong

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9688 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

address in the payload leads to program crash and restart (if
automatic restart is enabled), and the malicious code would not
be executed until the correct entry address is hit. This entry
scanning process can be more efficient by inserting a sequence
of no-operation (NOP) instructions, called a NOP sled, before
the injected malicious code in the payload, since any hit of a
NOP instruction will lead to the execution of malicious code
eventually.

A challenge of implementing BOF with respect to ARMv8-
M comes from the null bytes (0x00) in the payload, which also
function as the C string terminator. If the exploitable function
treats the payload as a string [e.g., strcpy() and strcat()] and
some null bytes exist in the crafted payload, the function will
cease to copy the payload right after hitting a null byte and
the attack will fail. We discuss two scenarios of null bytes as
follows.

First, null bytes can exist in the malicious code and NOP
sled since null bytes are naturally contained in many ARM
instructions. To eliminate these null bytes, one can replace the
problematic instructions by alternative instructions with the
same functionalities but without null bytes. For an instance, a
NOP instruction (0xBF00) can be replaced by the instruction
MOV R2, R2 (0x121C).

The second scenario refers to the null bytes in the entry
address of the malicious code. In SAM L11, the malicious
code has to be injected onto the stack, which is on the
SRAM with a fixed range of addresses from 0x20000000
to 0x20004000, within which the higher halfword of any
addresses is 0x2000, containing a null byte all the time. Taking
Payload1 in Fig. 2 as an instance, since the NOP sled and
malicious code are positioned after the entry address, the copy
process of Payload1 will terminate when the null byte in the
entry address is hit. Copying either the NOP sled or the mali-
cious code to the stack would fail in this case. A potential
solution is to construct the payload like Payload 2 in Fig. 2,
where the entry of malicious code is placed at the bottom.
Because of the little-endian ordering in ARMv8-M, the 0x2000
is located at the last two bytes of Payload 2 and shall be the
only two bytes missing when copied to the stack. The original
return address already contains 0x2000 in its upper halfword
if the caller function is executed from the SRAM, in which
case the BOF will still be applicable.

Payload2 shows an example that the malicious code is
copied to address 0x2000236D. In this case, the NOP sled and
malicious code are copied first. The copy operation will not
stop until it reaches the null byte in the entry address if both
NOP sled and malicious code do not contain any null bytes.
For the return address on the stack, the lower halfword will be
overwritten by the last two bytes (0x236D) of the entry address
in the payload and its higher halfword is kept unchanged. So
the updated return address would be 0x2000236D, which is
the entry of the malicious code.

2) Return-Oriented Programming Attack: BOF-based code
injection can be mitigated by security mechanisms such as
nonexecutable memory [19], which prevents code execution
from certain memory regions. However, an attacker can bypass
such defense by leveraging CRA. A representative CRA is the
ROP attack. Utilizing BOF to overwrite the return address,

Fig. 3. ROP attack with three gadgets.

ROP redirects the control flow to a target code sequence
(called a gadget) found in the existing software code. It is
also possible to chain several gadgets for more complex pro-
gram control. Each gadget in the chain is a code segment
responsible for certain operations (e.g., arithmetic operations
and load/store data) and must end with the epilogue of a sub-
routine for the sake of chaining the gadgets. In ARMv8-M, the
instruction sequence {POP LR, BX LR}, which is the epilogue
of leaf subroutines, pops a word to link register (LR), and then
branches to the address specified by LR. Instruction POP PC,
which is the epilogue of nonleaf subroutines, directly pops a
word to the program counter (PC).

Now, we explain how to chain the gadgets utilizing the sub-
routine epilogue in each of them. An adversary needs to craft a
“gadget stack” and send it along with the payload. Each gadget
in the chain, except the last one, has a corresponding gadget
frame placed on the gadget stack. A gadget frame consists of
several words of data that will be popped to the operand reg-
isters of the last POP instruction in that gadget. Data provided
by the gadget frame includes the address of the next gadget,
which helps to jump to the next gadget after being popped. An
example of a chain of three gadgets in ARMv8-M is presented
in Fig. 3. The payload contains the entry of Gadget 1 and two
gadget frames corresponding to Gadgets 1 and 2. To ensure
the entry of Gadget 2 will be popped to LR, the gadget frame
for Gadget 1 contains two more words before the entry word
since the second-to-last instruction in Gadget 1 pops the third
word from the stack frame to LR. Two words before the entry
of Gadget 2 are provided such that they will be popped to
R4 and R5 instead. Similarly, the gadget frame for Gadget 2
provides two words of data, which will be popped to R4 and
PC so that execution of Gadget 3 can be routed to start.

3) Heap-Based BOF Attack: Heap-based BOF refers to a
form of BOF exploitation in the heap area. As a SAM L11
project is linked with the GNU libc, the heap in SAM L11 is
managed by the glibc allocator [20]. The glibc allocator man-
ages free chunks in a doubly linked list where each chunk
contains the metadata of a forward pointer and a backward
pointer pointing to the free chunks before and after it. A sim-
ple exploitation of heap-based BOF is to overwrite the function
pointers stored on the heap to hijack the program control flow.
An adversary may also overwrite the metadata of a free chunk

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9689

Listing 2. Example of a vulnerable format string function.

via overflowing an adjacent activated data chunk. By manip-
ulating the pointers in the metadata, an adversary is able to
corrupt arbitrary memory with arbitrary values [21].

4) Format String Attack: A format function such as printf()
usually requires several arguments. The first argument is a for-
mat string, which may contain some format specifiers (e.g., %s
and %x). When the format function is executed, those format
specifiers will be replaced by the subsequent arguments with
the specified formats. Therefore, the number of specifiers in
the format string is supposed to match the number of additional
arguments. The format string exploits occur when a format
function receives a format string input that contains more for-
mat specifiers than additional arguments supplied. By sending
a well-crafted format string with specific format specifiers to a
vulnerable format function, an adversary may eventually cause
program crash, memory leakage, and memory alteration at a
specific memory location of the stack, or even in an arbitrary
readable/writable memory location specified by an address.

In SAM L11, an adversary is able to exploit format string
vulnerabilities for memory crash and reading/writing some val-
ues at a specific stack location by sending a malicious string
input containing more format specifiers than expected. For
example, by sending the string “%x %x %x” to the vulnera-
ble function illustrated in Listing 2, in which no arguments are
provided to the three specifiers in the input format string, three
bytes of data following the return address on the stack will be
printed in hexadecimal. However, reading or writing at an arbi-
trary memory location specified by an address is unachievable
in SAM L11 due to the particular memory addressing as shown
in Fig. 1. Such attacks require the target address to present in
the input format string, e.g., “\x34\x12\x00\x20%x %x %x %x
%s.” Adversaries who aim at the memory of SAM L11 will
find that any address of the memory would contain at least
one null byte. During the compilation, the process of parsing
the input format string will terminate when the null byte in the
target address is reached. The rest of the input format string
cannot be parsed correctly; hence, the attack would fail.

5) Attacks Against NSC Functions: The nonsecure soft-
ware in the NSW may desire to use the secure services in
the SW. For the sake of such requirements, TrustZone-M pro-
vides the NSC memory region within the SW. Developers are
able to define NSC functions in the NSC as the gateway to
the SW. NSC functions are characterized with two features:
1) they can be called from the NSW and 2) they have the priv-
ilege of accessing Secure resources since the NSC is a region
within the SW. With such abilities, nonsecure software can
call specific secure services by first calling the corresponding
NSC functions. The NSC functions then help to call the target
Secure functions and pass the required arguments assigned by
the nonsecure callers.

As the gateway to the SW, the implementation of the
NSC software should be particularly cautious. According to

(a) (b)

Fig. 4. Secure and trustworthy air quality monitoring device (STAIR).
(a) STAIR in the field. (b) Internals of STAIR.

Listing 3. Example of a vulnerable NSC function.

the guidance from ARM [22], hardware, toolchain, and soft-
ware developers share a common responsibility to implement
the NSC software securely. Though some requirements are
offered in the guidelines, since the hardware and toolchain
vary from vendors to vendors, there is no off-the-shelf solution
to implementing trusted NSC software.

Securing the NSC functions is related to the research on
interface security, such as [23] and [24], which analyze the
potential vulnerabilities existing in TEE when interfacing the
untrusted program execution to the trusted enclave. According
to [23], the interface vulnerabilities are concentrated on invalid
sanitization of the low-level application binary interface (ABI)
and the high-level application programming interface (API).
As for ABI, the adversary may control the low-level machine
state such as register values transferred to the TEE. TrustZone
is considered to be relatively resistant given its hardware
design. A developer may pay more attention to developing the
secure API, which takes potentially compromised parameters
from the NSW.

We identify two potential pitfalls that software developers
may meet while programming the NSC functions. The first
pitfall is caused by the data arguments sent from the NSW.
The toolchain of SAM L11 only helps to generate the secure
gateway veneer for NSC functions but leaves the function pro-
gramming to the developers. Security-related coding mistakes
may be present in the NSC functions as well and can be
exploited by crafting Nonsecure data inputs. Software exploits
in the NSC region would lead to a compromised SW. This is
because the NSC region belongs to the SW and a compro-
mised NSC program under the control of an adversary can
access any resources inside the SW.

The second pitfall comes from the untrusted pointer inputs.
When nonsecure software passes pointer arguments to the SW
through NSC functions, NSC functions should ensure that

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9690 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 5. Block diagram of the air quality monitoring device—STAIR.

these pointers point to the nonsecure memory. Otherwise, NSC
and secure functions may assist the nonsecure software to
read or write the secure memory. The vulnerable NSC func-
tion illustrated in Listing 3 can leak and corrupt the secure
memory contents at arbitrary secure addresses if the first and
the third arguments are secure addresses and the second argu-
ment is 1. The violation of the principle that “secure resources
are not allowed to be accessed by the NSW” severely harms
the fundamental security of the TrustZone-M implementation.

V. IMPLEMENTATION: TRUSTZONE-M-ENABLED AIR

QUALITY MONITORING DEVICE

Using SAM L11, we implement our security framework
with a secure and trustworthy air quality monitoring device
named STAIR. An air quality monitoring device is a small
IoT device deployed for detecting ambient air quality measure-
ments, such as mass concentrations of particulate matter (PM).
The collected measurements are sent to the cloud for further
analysis. Fig. 4 shows the external appearance and internal
structure of the STAIR. It is worth noting that the security
of the system relies on the hardware mechanisms (e.g., debug
access level and boot ROM of SAML11) and adopted cryp-
tographic algorithms [e.g., SHA256 and elliptic curve digital
signature algorithm (ECDSA)]. It is reasonable to consider
that compromising the hardware and well-known crypto-
graphic algorithms is difficult. Therefore, these mechanisms
are trustworthy if they are implemented without errors.

A. Device Design

Fig. 5 illustrates the hardware design of the STAIR device.
The main controller board is built around a SAML11E16A
MCU that provides the electronics system with a secure
way to handle and transport sensor data such as the PM2.5
readings from a PLANTOWER PMSA003 laser dust sen-
sor from the device to the remote server. The main board
is embedded with some peripherals, including an I2C multi-
plexer (TCA9548A) to expand input ports for sensors, a mount
to connect a SIM7000 cellular networking module providing
a network stack for communication via secure protocols, such
as HTTPS and MQTTS, an on-board cryptoauthentication chip
(ATECC608A) to support security algorithms, and a built-in

micro SD card for data storage. I2C, SPI, and UART proto-
cols are used to communicate with these peripherals. Since
ATECC608A is a security-critical component, it communi-
cates with the SW through a Secure I2C port, while other
components are connected to the NSW.

The whole device is powered by the battery management
system (BMS), which is a large board that works in tandem
with the main controller board, and handles the passive charg-
ing of the batteries using solar power from a solar panel and
power regulation required to keep the device perpetually “on.”
The BMS contains an onboard I2C fuel gauge, a buck battery
charge controller, a bidirectional current/power monitor chip,
and a digital potentiometer to control the charging rate. Each
of these onboard components use I2C to communicate and
allow the main controller board to access data regarding the
battery states.

B. Hardware Security

SAM L11 is equipped with one SWD debugging and pro-
gramming interface. The SWD interface can be protected by
SAM L11’s debugger access level (DAL) technique. Providing
three debug access levels, i.e., DAL0, DAL1, and DAL2, differ-
ent access privileges can be granted to the external debuggers,
and the transitions between different access levels are pro-
tected by security keys. DAL0, with the lowest access level,
is blocked from accessing to any memory regions; DAL1 is
only allowed to operate on the NS memory region; DAL2
has the highest debug access level and is able to access the
whole chip without any restrictions. While transitions from
higher levels to lower levels can be done with no precondi-
tions, leveling up requires providing a specific chip erase key
(CEKEY0, CEKEY1, or CEKEY2) and erasing the memory
regions, which was not accessible to the original lower level
but will be accessible after the level transition. For example,
transitioning from DAL0 to DAL2 requires the debugger to
provide CEKEY2 and execute ChipErase_ALL command for
clearing both secure and nonsecure memories.

To ensure the debug port is in its most secure state, we set
the SWD interface of STAIR to DAL0 and define three chip
erase keys in SAM L11’s NVM BOCOR row. The on-device
chip erase keys are stored securely because the NVM BOCOR

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9691

Fig. 6. Control flow of secure boot. The hollow boxes represent security
checks provided by SAM L11, while other boxes are security checks designed
by us.

row can only be programmed and read by secure software
or external debugger with DAL2. In this way, only one who
obtains CEKEY0 is able to access nonsecure memory and one
who owns CEKEY0 and CEKEY1, or CEKEY2 can access
both secure and nonsecure memories. The debugger cannot
read memory contents through the SWD port, since chip erase
commands have to be executed before DAL transfers to higher
access levels.

C. Boot-Time Software Security

SAM L11 provides a secure boot mechanism based on its
Boot ROM and NVM BOCOR row. Setting BOOTOPT fuse
in BOCOR row to 2 or 3, Boot ROM will carry out validation
checks on BOCOR row and the secure flash region for boot
(named Boot Secure or BS region) using SHA256 hash with
a key variant when the device boots. The key is preinstalled
in BOCOR row, which can be hidden from other applications,
therefore, would not be exposed to malicious people. The igno-
rance of checking the security states of other flash regions
stimulates us to implement our own secure bootloader in the
BS region for validating secure and nonsecure applications at
boot, by which a chain of trust is constructed as presented in
Fig. 6.

The boot sequence starts from the execution of Boot
ROM. The Boot ROM checks the authenticity and integrity
of BOCOR row and the secure bootloader, which will be
executed next if all security checks are passed. The secure
bootloader is in charge of validating both the secure and non-
secure applications before their executions. We implement this
validation by using ECDSA signature verification. Specifically,
the digests of the applications are calculated by SAM L11’s
on-device cryptoaccelerator using the SHA256 hash algorithm,

and the digests and the signatures, which are appended at the
end of applications, are sent to ATECC608 for signature veri-
fication, of which the public key is protected in ATECC608’s
secure memory.

D. Runtime Software Security

We secure the on-device runtime software for the bare-metal
device from two aspects: 1) protecting the applications from
classic memory corruption attacks and 2) checking any inputs
from nonsecure applications to NSC functions.

A common way of compromising the runtime software is to
inject malicious code to the device’s memory and then divert
the control flow to the malicious code. For SAM L11, an
attacker may inject code to the code flash, data flash, stack,
or heap. In our system, The stack and heap are parts of the
SRAM; application code runs from the flash. The SRAM and
data flash are only used for nonexecutable data. Therefore,
we set SAM L11’s SRAM and data flash to be nonexecutable
in order to avoid code injection attacks. This is achieved by
setting two BOCOR row fuses, namely, data flash is execute
never (DXN) and RAM is execute never (RXN), to 1. In addi-
tion, the secure bootloader will set the secure and nonsecure
code flash to be nonwritable, using the MPU, before starting
to run the application code. The flash will be recovered to be
writable when the device reboots so that only the bootloader
is able to write to the code flash if an OTA update is required.
By this means, attackers cannot alter any code at runtime.

As we discussed in Section IV, exploits in the SW might
be triggered by parameters from the NSW through NSC func-
tions. Therefore, inputs of NSC functions should be carefully
checked. To this end, we validate any pointer parameters at
the beginning of the NSC functions, ensuring they point to
Nonsecure addresses. Data parameters are inspected as well
with specific rules, by which crafted malicious payload would
be filtered out. However, there is no general ways to sanitize
any data inputs. Validation rules should be created depend-
ing on specific functions. We present our NSC function and
parameter checks, as an example, in Section VII-B.

Besides, we introduce two possible security techniques
against CRAs such as ROP. One of them, namely, the ASLR
for MCU, is devised and implemented in our system.

1) Control Flow Integrity: CFI [25] is a technique for
preventing runtime control-oriented attacks such as ROP. By
monitoring the control flow of a program at runtime, it can
detect unexpected control flow changes. Nyman et al. [4] pro-
vided an implementation of CFI for TrustZone-M to protect
the NSW. In it, a control flow graph (CFG) of the nonsecure
program is constructed by static or dynamic analysis of its
code and is saved in a nonwritable region of the NSW. Code
instrumentation is performed so that the program jumps to a
branch monitor before any control flow changes in the origi-
nal code. The branch monitor refers to the CFG and monitors
control flow changes at runtime. Before a function call, the
correct return address is pushed on a shadow stack in the SW.
Since a function might be called by different callers and return
to different places at runtime, the CFG cannot tell the exact
return address at runtime. The shadow stack in the SW is used

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9692 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

to record the correct return address for a certain function call.
Here, the stored return addresses must be fully protected from
being altered. The SW, which can be seen as a trust anchor
for the NSW, provides the required secure storage, namely,
shadow stack, for the correct return addresses and a TEE for
any operations on the shadow stack.

The CFI for protecting the control flow of the NSW is not
sufficient for the overall system security. It can be observed
from Table II that all software attacks may occur in both the
SW (including NSC and SWX) and NSW. Recall that the CFI
mechanism in [4] requires a TEE and a secure storage. In the
case of TrustZone-M, the SW is supposed to play the role of
such a trust anchor. If the SW itself is insecure and vulnerable
to potential software attacks at runtime, it cannot provide the
indispensable secure storage and TEE required by CFI for the
NSW. Thus, the effectiveness of the CFI enforcement for the
NSW would be harmed. Another issue of CFI is that it may not
defeat the heap-based BOF or format string attacks if control
flows are unchanged but sensitive data are modified. We have
also implemented CFI, but the code instrumentation needed by
CFI adds too much code to implement a full version of the air
quality monitoring device. We will not include the evaluation
of CFI in this article.

2) Address Space Layout Randomization: ASLR [26] is
another security technique used to mitigate CRAs. With
ASLR, the memory layout of a process’s address space is
randomized instead of being fixed, so that the attacker can-
not predict the location of memory of interest, such as the
stack, libraries, heap, and code modules. To defeat poten-
tial CRAs, we design and implement an ASLR scheme for
Cortex-M processors and will introduce it in Section VI.

E. Network Security

The cellular module SIM7000 provides the network stack
to the STAIR. Through the cellular network, our air quality
device connects to the AWS IoT platform for the sake of cloud
services. To enable two-way authentication, message encryp-
tion and integrity checks, MQTT over TLS is adopted as the
communication protocol.

F. OTA Update Security

To ensure the authenticity, integrity, and privacy of the
OTA procedure, HTTPS serves as the communication proto-
col for securely downloading newly released software. The
downloaded software is temporarily stored in the SD card
and is authenticated through the ECDSA signature verification
provided by ATECC608A.

To enable anti-rollback prevention, we preserve the current
firmware version in SAM L11’s secure data flash so that only
secure applications are able to read or write it. Once a new
firmware is downloaded to the SD card, the secure application
will compare the new firmware version to the current one and
will continue to upgrade the firmware only if the new version
is larger than the current version. The stored firmware version
will also be updated to the newest version. Otherwise, the
downloaded firmware will be deleted from the SD card.

Fig. 7. Workflow of iASLR.

Fig. 8. Flash layout of an iASLR-enabled system.

VI. IASLR–IMAGE-BASED ASLR

In this section, we first introduce the workflow of iASLR
and the challenges, and then address the challenges. We
discuss the limitations of iASLR at the end of this section.

A. Workflow and Challenges

Fig. 7 gives the workflow of iASLR and Fig. 8 illustrates the
memory (flash) layout of the iASLR powered system. Recall
we run the system directly from the flash. Our iASLR always
keeps one copy of NSW app image at the start of the non-
secure flash (denoted as base app) and relocates the base app
within the free nonsecure flash every time the device boots.
In a TrustZone-M-enabled system, although we can relocate
the secure app in the SW, we assume the secure app is secure
and will focus on the design of relocating the nonsecure (NS)
app located in the nonsecure world.

Generating Apps: First, we generate the secure app and the
NS app. We run Python scripts on the two apps to collect the
size of free nonsecure flash (i.e., the nonsecure flash excluding
the base app), the addresses of all NSC calls, and the desti-
nation address of each absolute branch instruction in the base
app as the metadata. The metadata are stored in the SW and
will be used for image randomization and code patching.

One challenge with relocating the base app is the absolute
addresses in the binary code when the app is generated with
the default compiler settings. These absolute addresses only
work with a fixed base address (0x0 in our case). An intuitive

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9693

solution is to compile the code with relative addressing flags.
We use the GCC compiler with two specific compilation flags,
including -fpic and -mno-pic-data-is-text-relative, so that all
data accesses and most branches become PC-relative and can
function after the image is relocated.

However, we still face two challenges after compilation with
relative addressing flags: 1) NSC calls that call NSC func-
tions in the SW and 2) function pointers that still use absolute
addresses. We address the issue of NSC calls with static code
patching at boot time and address the issue of function pointers
with control flow correction at runtime.

Flashing Apps: We then flash the NS app to the start of
the nonsecure flash, denoted as base app or base NS app,
and secure app, including iASLR runtime program and the
metadata, into the device.

Booting Device: When the system boots, as part of the
secure bootloader, a relocation engine copies the base app
image to a randomized address within the free nonsecure flash.
The relocation engine sets the base app image to be nonexe-
cutable through MPU so as to prevent the base app from being
exploited since the base app image has a fixed base address
and the attacker can know its layout. Therefore, there are two
nonsecure app images in our system: 1) the base app image
that is always located at the start of the nonsecure flash and
2) the relocated app image somewhere in the rest of the non-
secure flash. The relocation engine also performs static code
patching to patch NSC calls in the relocated app as detailed
in Section VI-B.

Running Relocated App and Control Flow Correction
Engine: Now, system booting is finished and the boot code
jumps to run the app in the relocated app image. At run-
time, a control flow correction engine is used to handle
absolute branches involving function pointers as detailed in
Section VI-C.

B. Static Code Patching

Static code patching is applied to all NSC calls in the relo-
cated image. An NSC call is a PC-relative branch, addressing
the NSC function with the offset from the current PC value
to the NSC function entry. Since the NSC functions are in the
NSC region and are not relocated, the offset in each NSC call
has to be patched. Recall we store the offsets of all the NSC
calls in the metadata. The relocation engine can locate those
NSC calls in the relocated image. For each NSC call, the off-
set of the relocated image relative to the base app image is
added to its offset in the NSC call.

C. Control Flow Correction

At runtime, we use a control flow correction engine to patch
all absolute branches introduced by function pointers. The
correction engine is implemented in the Armv8-M HardFault
handler. When an absolute branch in the relocated app image
executes, the destination address of the absolute branch is an
absolute address and points to the base app image. Since the
base app image has been labeled as nonexecutable, any attempt
of executing instructions within the base app image leads to a

HardFault exception, which is handled by the HardFault han-
dler. In this way, our correction engine is able to trap the
control flow. The HardFault handler knows the address of
the instruction that incurs the HardFault exception since the
instruction’s address is pushed onto the stack as the return
address of the HardFault handler.

The correction engine then verifies whether the absolute
address of interest is actually a destination address of an abso-
lute branch by searching it in the metadata. Recall we store
all the destination addresses of absolute branches in the meta-
data. The verification makes sure that the correction engine
only handles the exceptions caused by absolute branches since
there are other types of HardFault exceptions. After successful
verification, the correction engine adds the offset of the relo-
cated image to the absolute address of interest and derives the
address of the target instruction in the relocated image. The
HardFault handler changes its return address on the stack to
the address of the target instruction so that the handler can
return to run the target instruction.

D. Limitations

The ASLR scheme has its limitations. First, if an adversary
knows the destination addresses of the absolute branches in
the base app image, they may deploy a ROP attack, and divert
the control flow to those addresses. Since the control flow
correction mechanism cannot differentiate raised exceptions
by such operations, the corresponding code in the relocated
image then executes. However, in this case, the adversary has
to use a whole function as a gadget to assemble a ROP chain.
Such large gadgets are considered to be of very low quality
to achieve certain operations [27]. An adversary can hardly
launch a successful ROP attack. Second, our iASLR scheme
has the storage overhead since there are two app images in
the system: 1) the base app image and 2) relocated app image.
Third, the boot time of an iASLR powered system will increase
because of the relocating operations.

VII. EVALUATION

We evaluate the five software attacks presented in
Section IV. We are able to successfully perform these attacks
against a TrustZone-M-enabled MCU, SAM L11. We also
evaluate the effectiveness and performance of security mech-
anisms implemented in the STAIR air quality monitoring
device.

A. Software Attacks

Experiment Setup: We use a laptop as the attacker to con-
tinually send inputs to a SAM L11 Xplained Pro Evaluation
Kit as the victim device. The laptop is connected with SAM
L11 through a USB-to-UART adapter while an attacker may
also inject malicious strings into an Internet connection of a
SAM L11-based IoT device. In SAM L11, two UARTs are
configured accordingly as a nonsecure peripheral and a secure
peripheral to receive inputs sent from the laptop to the NSW
and SW, respectively. For the first four attacks, we construct
specific vulnerable functions in both nonsecure and secure
applications of SAM L11 and malicious payloads will be sent

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9694 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

TABLE III
SIZES OF PAYLOADS AND EXPERIMENT RESULTS IN DIFFERENT ATTACK SCENARIOS

through the UARTs to trigger the attacks. The sizes of the
payloads and experiment results are given in Table III.

Experimental Results: In the BOF-based code injection
attack, we configure the stack to be executable, which is com-
monly configurable in MCUs. We assemble the payload with a
constant string, malicious code, the entry of the malicious code
(obtained via random brute-force scanning), and a NOP sled
with 50 NOP instructions. The malicious code is designed to
call a print function and supply the address of a constant string
as the argument of the print function. Our attack succeeds and
the constant string is printed in the adversary’s terminal.

As a proof-of-concept implementation of ROP, we craft a
chain of gadgets with three exploitable gadgets by splitting
the assembly code of a program, which prints the memory
content at a given address, into three code segments. A sub-
routine epilogue (i.e., POP PC) is appended at the end of
each code segment. These gadgets are prestored at different
locations of the flash in advance. We craft a gadget stack to
chain these gadgets and send it along with the payload to
SAM L11. As a result, the intended constant string is success-
fully printed on the adversary’s terminal. A way to evaluate
the feasibility of ROP against a certain program is to count
up the occurrences of potential gadgets in the program. In
fact, this process is equivalent to counting up the number of
“POP PC” and “BX LR” instructions according to the defini-
tion of potential gadgets introduced in Section IV-B2. We take
a basic nonsecure application image, which only initializes
necessary peripherals, as an example and search all the sub-
routine epilogues in it. The Capstone disassembly engine [28]
is used to dissemble and search in the binary code. The size of
the example image is 4.14 kB with 1908 instructions in total.
As a result, 49 “POP PC” and 16 “BX LR” are found in the
image binary, representing 3.41% of the whole image.

To launch the heap-based BOF attack, we first construct two
adjacent data blocks on the heap of SAM L11 and a vulner-
able memcpy() function, which copies the input payload to a
buffer in the first data block without checking its boundary.
Our payload successfully triggers the BOF attack and over-
writes a function pointer in the next data block with the entry
of a preinjected malicious code. The malicious code is later
executed when that function is called.

As we stated in Section IV-B4, an adversary can exploit the
vulnerable format string function in SAM L11 to read out the
stack contents. The payload used is “%08x %08x %08x %08x
%08x” and we eventually read five sequential bytes from the
stack via UARTs.

To verify the feasibility of NSC-specific attacks, we look
into the example software projects provided by the vendor of

Listing 4. Vulnerable NSC functions in SAM L11 demo code.

SAM L11, five of which contain NSC software implemen-
tations. We statically analyze the source code of these five
NSC implementations and find three to be vulnerable. These
three implementations share two vulnerable NSC functions as
in Listing 4, where two of them contain the first function and
the other contains the second function. The first vulnerable
function is subject to the format string attack when it is called
by the nonsecure software and the argument is a crafted for-
mat string input that can be controlled by an adversary. In
our experiment, we send “%08x %08x %08x %08x %08x” as
the payload and five sequential bytes from the Secure stack
are eventually printed in the adversary’s terminal. The sec-
ond function has an information leakage problem. We call
this function in the NSW with an argument, which is a secure
address, as a result, the secure memory content at the target
location is then printed.

B. Security of the Implemented Air Quality
Monitoring Device

We evaluate the security mechanisms that we have used for
the STAIR device.

Debug Interface: The STAIR device is equipped with one
SWD debug interface. We connect a laptop, on which Atmel
Studio, the Microchip’s integrated development environment
(IDE) for programming SAM MCU, has been installed, to
the debug interface through an SWD debugger. Using Atmel
Studio, we are able to identify the SAM L11 MCU of the target
STAIR device. However, memory contents, such as firmware
image and system configurations, i.e., UROW and BOCOR,
are invisible to the users. The IDE shows that the debug access
level is set to DAL0; hence, the 32-bits CEKEY1/CEKEY2 is
required to raise the level to DAL1/DAL2 for debugging and
programming the NSW/the whole chip. The sensor will be
protected from attacks through the debug port only if CEKEY1
and CEKEY2 are not divulged.

Secure Boot: The secure boot mechanism involves two
stages of verification. At the first stage, the Boot ROM ver-
ifies the secure bootloader using the SHA256 hash function
with an authentication key. To evaluate its effectiveness, we

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9695

Listing 5. NSC function for providing secure SHA256 algorithm to the
NSW.

manipulate one byte of the secure bootloader from 0x00 to
0xFF and reboot the device. As a result, the device halts at
the boot stage. If a debugger is connected, a fault exception
will be triggered.

Defense Against Classic Memory Corruption Attacks: To
defend against the code injection attack, we set both data
flash and RAM to be nonexecutable. We verify this by launch-
ing two BOF-based code injection attacks in the NSW, which
eventually divert the control flows to code snippets stored in
either nonsecure data flash or nonsecure RAM. In both cases,
fault exceptions are generated when control flows are diverted.
Moreover, secure flash and nonsecure flash are nonwritable
during application execution in order to protect application
code from being altered. An ROP attack is conducted trying
to divert the control flow to a memory writing function and
provide the address of malicious code injected on the RAM as
the parameter of the writing function. As could be expected,
the MCU ignores the writing operation—it does not write the
new code to the target address and just continues to execute
the next instruction.

Defense Against NSC-Specific Attacks: The STAIR sensor
application contains one NSC function as shown in Listing 5.
Two parameters of this function are pointers. We check them
in order to ensure both are within the NSW. Another param-
eter is an integer, which defines the length of the input
array. We check the lower boundary of this value because
the input array must be within the NSW; in other words,
the end of the input array should not exceed the end of
the NSW.

OTA Update: We evaluate the anti-rollback prevention by
downloading an image with a valid signature but lower
version to the SD card. After we reboot the device, this
image is detected by the secure bootloader. Then, the boot-
loader deletes the image from the SD card because of the
invalid image version and continues to boot with the original
image.

C. Performance Evaluation

We evaluate time efficiency of different security mecha-
nisms, i.e., secure boot and OTA validation, and transmitting
air quality measurements to AWS IoT. We repeat each test for
30 times and present the evaluation results in Figs. 9–11. The

Fig. 9. Overheads of updating secure image (5.59 kB), NSC image (32B),
and nonsecure image (29.8 kB) through secure OTA.

Fig. 10. Overheads of secure boot using on-device crypto engine or
ATECC608 for hashing.

Fig. 11. RTT of transmitting data to AWS IoT through MQTTS protocol.

overheads for secure OTA and secure boot are both acceptable
for a small air quality sensor, which does not boot and update
frequently and does not need much interaction.

The secure OTA is able to update the three images (i.e., the
SW, the NSC region, and the NSW) separately. Accordingly,
we evaluate the time efficiency of validating each of the images
as shown in Fig. 9. It is observed that the time taken by valida-
tion is approximately proportional to the size of an image. The
very large portion of the overhead comes from the transmission
and response time when hashing the image via ATECC608.

For secure boot, image validation involves calculating the
signatures of images and verifying the signatures. Since
both SAM L11’s crypto accelerator and ATECC608 sup-
port SHA256 hash algorithm, we evaluate the performance
of secure boot with each of them. As a result, the on-device
hardware cryptoaccelerator shows a much better performance
with average time efficiency of 3.109 s than the ATECC608,
which needs 66.913 s in average.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9696 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

TABLE IV
ENTROPY BOUND OF ARM CORTEX-M23/M33-ENABLED BOARDS

While sending data to the AWS IoT platform, we use the
MQTTS protocol, which requires mutual authentication and
traffic encryption. It takes 1300 ms on average to send a
message and get the response from the server.

The reported performance of our device is appropriate for
our purpose of environmental monitoring, which does not
require the real-time interaction with users or much com-
puting at the device end. Our STAIR device uses the ARM
Cortex-M23 32-bit processor core operating at up to 72-MHz
frequency. The successor of Cortex-M23, the TrustZone-
enabled Arm Cortex-M33 32-bit RISC core, operates at a
frequency of up to 110 MHz. It can be observed that those
chips are designed for low-power systems that are not com-
pute intensive. The system developers shall select appropriate
chips based on their application requirements. For exam-
ple, Cortex-A-based application processors with the TrustZone
technology are high performance processors for applications
such as smartphones and can be used for IoT applications that
require real-time user interaction and performance-intensive
computing.

D. Evaluation of iASLR for IoT

We analyze iASLR from the perspectives of security and
performance. Time and memory overheads are evaluated with
three applications. One is the lightweight version of our STAIR
application (without remote control and OTA). The other two
are demos of SAM L11 provided by Microchip [29].

1) Security Analysis: The efficacy of the ASLR scheme
against CRAs depends on the randomness of the relocated
image address. The randomness is usually quantified by
entropy and formulated as in (1), where S is the entropy of the
iASLR-enabled system, f is the size of free flash space that
can be used for relocation, fs is the size of the entire flash that
can be used to run code, and i is the application image size
(byte). Recall that the base address of the application image
must be even

S = log2
f − i

2
< log2

f

2
< log2

fs
2

= log2 fs − 1. (1)

Therefore, the entropy has a bound of log2 (fs/2).
Table IV lists TrustZone-M powered MCUs from known

companies, their embedded flash size that can be used to run
code, and the bound of the system entropy. It can be observed
that MCUs with larger flash will have better entropy. We rec-
ommend that an alert shall be sent to the system administrator
if an attack triggers errors and causes system rebooting.

2) Time and Memory Overheads: Our iASLR for IoT
devices introduces both boot-time and runtime overheads.
At boot time, the image relocation and NSC call patching

involve large amount of memory read and write operations.
As presented in Table V, when iASLR is enabled, the larger
the NS app is, the longer time the boot procedure takes. At run-
time, the CF correction engine traps and patches every absolute
branch, thus introducing runtime delay. All three applications
in Table V show small runtime overheads no more than 36%,
and two of them have overheads of 2.8% and 3.5%. Note that
we have removed all big time delay functions (delay for more
than 0.5 ms) from these three applications during experiments
since the delays do not create overhead but will dilute the run-
time overheads introduced by iASLR. In practice, there may
be large time delays in IoT device code.

Memory overhead of an iASLR-enabled system exists in
both the SW and NSW. First, all the code and metadata of
iASLR implementation are in the SW. Second, compiling with
required flags changes the size of the nonsecure application.
For most of the cases in Table V, the overhead is no greater
than 10% while there is one with overhead at 17%.

Based on the evaluation and analysis above, we believe
iASLR is suitable for long-running IoT devices.

1) Security: When an iASLR-enabled IoT device is
attacked, the system may crash and hang. Many embed-
ded devices have watchdog timers [35], which can
automatically reboot the devices when program crash
is detected, while IoT devices may be rebooted manu-
ally too. When a device reboots, iASLR relocates the
image and protects the device. The attacker may con-
tinue to perform the attack and guess the location of the
relocated image repeatedly. That is, why we recommend
an IoT device shall have relatively large flash to achieve
large entropy and an alert shall be sent to the system
administrator if there is a crash.

2) Performance: We have performed evaluation of the
iASLR-enabled IoT devices and the performance is
promising while we will investigate how to fur-
ther reduce the overhead of iASLR and improve the
performance in future work.

VIII. RELATED WORK

We now introduce related work on TrustZone-M. Traditional
defense mechanisms against software attacks can be resource
intensive in terms of storage and computation power.
Lightweight techniques are often needed for those resource-
constrained IoT devices. Abera et al. [36] proposed a remote
attestation method, exploiting the separated two execution
environments in TrustZone-M-enabled IoT devices, to monitor
the CFI of running program. Nyman et al. [4] implemented an
interrupt-aware CFI in the Cortex-M SoC. These mechanisms
focus on securing only the nonsecure applications, assuming
TrustZone is set correctly and the SW is secure.

Security issues may also exist in TrustZone itself. Research
has been performed regarding the security issues in ARM
TrustZone and its implementation. Rosenberg [37] identified
an integer overflow vulnerability in QSEE, the Qualcomm
TrustZone implementation. Kanonov and Wool [38] analyzed
security of KNOX, the Samsung’s security platform con-
structed based on TrustZone, and discovered several design

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9697

TABLE V
TIME AND MEMORY PERFORMANCE OF APPLICATIONS WITH AND WITHOUT IASLR ENABLED

flaws and vulnerabilities. Guo et al. [39] discussed the techni-
cal principle of ARM TrustZone and a vulnerability found in
its cache architecture. Koutroumpouchos et al. [40] preformed
analytical exploration on vulnerabilities of TrustZone-A-
based TEE and gave a taxonomy of the attacks targeting
TrustZone-A. Cerdeira et al. [41] presented Systematization
of Knowledge (SoK) on the vulnerabilities of Cortex-A
TrustZone-assisted TEE. However, our work focuses on the
Cortex-M TrustZone. Because of the implementation differ-
ences of TrustZone-A and TrustZone-M, the security analysis
on TrustZone-A cannot be applied uniformly to TrustZone-M.

The research on TrustZone-M application has been emerg-
ing. Iannillo and State [42] proposed a framework for the secu-
rity analysis of TrustZone-M. However, their work does not
identify concrete vulnerabilities/attacks against TrustZone-M.
Jung et al. [7] designed a secure platform based on the plat-
form security architecture (PSA) with a brief discussion of
possible attacks. O’Flynn and Dewar [8] discovered an SCA in
SAM L11, using power analysis to breach cryptographic algo-
rithms. Instead, our work demonstrates five types of realistic
attacks, breaching the software security of TrustZone-M.

To defeat CRAs, we may use the ASLR technique. The
researchers have proposed to create firmware with different
memory/flash layouts for each individual IoT device at the
compilation time [13]. However, the memory layout does not
change after compilation. In such a scheme, the attacker will
succeed after trying a number of times since the memory lay-
out is the same even after the device reboots. In this article, we
design and implement an iASLR specifically for IoT devices in
order to defend against CRAs. iASLR relocates an application
image every time the device boots.

IX. CONCLUSION

In this article, we presented a security framework for
IoT devices that use TrustZone-M-enabled MCUs from per-
spectives of hardware, boot-time software, runtime software,
network, and OTA update. We performed systematic run-
time software security analysis of TrustZone-M-enabled IoT
devices. We presented potential pitfalls of TrustZone-M
programming and five potential software attacks against
TrustZone-M, including the stack-based BOF attack for code
injection, ROP, heap-based BOF attacks, format string attacks,
and attacks against NSC functions. We validated these attacks
on a TrustZone-M-enabled MCU, SAM L11. To defend
against these attacks, guidelines for the overall system security
of TrustZone-M-enabled IoT devices are presented. We imple-
mented the proposed security framework for an air quality
monitoring device and evaluated its performance. One les-
son we learned from implementing the air quality monitoring

device is the MCU shall be carefully chosen with enough
amount of flash to host the application code.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, and recommendations
in this article are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and
H. Karimipour, “A survey on Internet of Things security: Requirements,
challenges, and solutions,” Internet Things, vol. 14, Jun. 2021,
Art. no. 100129.

[2] A. Mohanty, I. Obaidat, F. Yilmaz, and M. Sridhar, “Control-hijacking
vulnerabilities in IoT firmware: A brief survey,” in Proc. 1st Int.
Workshop Security Privacy Internet Things (IoTSec), 2018, pp. 1–4.

[3] K. V. English, I. Obaidat, and M. Sridhar, “Exploiting memory corrup-
tion vulnerabilities in connman for IoT devices,” in Proc. 49th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), Portland, OR, USA,
2019, pp. 247–255.

[4] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in Proc. Int. Symp. Res. Attacks Intrusions Defenses (RAID), 2017,
pp. 259–284.

[5] “Trustzone for Cortex-M.” Arm. [Online]. Available: https://
www.arm.com/why-arm/technologies/trustzone-for-cortex-m (accessed
May 1, 2021).

[6] L. Liu, J. Ma, C. Zhang, T. Chong, H. Zhang, and Y. Dong,
“Security software system design and implementation for micro-
controllers based on trustzone,” DEStech Trans. Comput. Sci. Eng.,
Dec. 2019, doi: 10.12783/dtcse/cisnrc2019/33312.

[7] J. Jung, J. Cho, and B. Lee, “A secure platform for IoT devices based on
arm platform security architecture,” in Proc. 14th Int. Conf. Ubiquitous
Inf. Manag. Commun. (IMCOM), Taichung, Taiwan, 2020, pp. 1–4.

[8] C. O’Flynn and A. Dewar, “On-device power analysis across hardware
security domains,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 4, pp. 126–153, 2019.

[9] S. K. Bukasa, R. Lashermes, H. Le Bouder, J.-L. Lanet, and A. Legay,
“How trustzone could be bypassed: Side-channel attacks on a modern
system-on-chip,” in Proc. IFIP Int. Conf. Inf. Security Theory Pract.,
2017, pp. 93–109.

[10] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from
Qualcomm’s TrustZone,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2019, pp. 181–194.

[11] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in Proc. IFIP
Int. Workshop Inf. Security Theory Pract., 2011, pp. 224–233.

[12] “Saml11 Xplained Pro Evaluation Kit,” Microchip. [Online]. Available:
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/
DM320205 (accessed May 1, 2021).

[13] A. A. Clements et al., “Protecting bare-metal embedded systems with
privilege overlays,” in Proc. IEEE Symp. Security Privacy (SP), San Jose,
CA, USA, 2017, pp. 289–303.

[14] L. Luo, Y. Zhang, C. Zou, X. Shao, Z. Ling, and X. Fu, “On runtime
software security of TrustZone-M based IoT devices,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Taipei, Taiwan, 2020, pp. 1–7.

[15] D. Song et al., “SoK: Sanitizing for security,” in Proc. IEEE
Symp. Security Privacy (S&P), San Francisco, CA, USA, May 2019,
pp. 1275–1295.

[16] Y. Chen, Y. Zhang, Z. Wang, and T. Wei, “Downgrade attack on
TrustZone,” 2017, arXiv:1707.05082.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.12783/dtcse/cisnrc2019/33312

9698 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

[17] “Side-Channel Attack.” [Online]. Available: https://en.wikipedia.org/
wiki/Side-channel_attack (accessed Dec. 9, 2021).

[18] “Return Oriented Programming (ARM32).” Azeria Labs. [Online].
Available: https://azeria-labs.com/return-oriented-programming-arm32/
(accessed May 1, 2021).

[19] “NX Bits—Microsoft Wiki—Fandom.” Microsoft. [Online]. Available:
https://microsoft.fandom.com/wiki/NX bit (accessed May 1, 2021).

[20] “Arm Heap Exploitation.” Azeria Labs. [Online]. Available: https://
azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-
implementation/ (accessed May 1, 2021).

[21] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomiza-
tion for security,” in Proc. 22nd Int. Symp. Rel. Distrib. Syst., Oct. 2003,
pp. 260–269.

[22] “ARMv8-m Secure Software Guidelines 2.0.” Arm. [Online]. Available:
https://developer.arm.com/docs/100720/0200/secure-software-guidelines
(accessed May 1, 2021).

[23] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of enclave
shielding runtimes,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2019, pp. 1741–1758.

[24] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “COIN attacks: On
insecurity of enclave untrusted interfaces in SGX,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst., 2020, pp. 971–985.

[25] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans. Inf.
Syst. Security, vol. 13, no. 1, pp. 1–40, Nov. 2009.

[26] “Address Space Layout Randomization.” Wikiwand. [Online]. Available:
https://www.wikiwand.com/en/Address_space_layout_randomization
(accessed May 1, 2021).

[27] A. Follner, A. Bartel, and E. Bodden, “Analyzing the gadgets,” in Proc.
Int. Symp. Eng. Secure Softw. Syst., 2016, pp. 155–172.

[28] “The Ultimate Disassembly Framework—The Ultimate Disassembler.”
[Online]. Available: http://www.capstone-engine.org/ (accessed May 1,
2021).

[29] “Atmel Start.” Microchip. [Online]. Available: https://start.atmel.com/
(accessed May 1, 2021).

[30] “Musca-B1 Test Chip Board.” [Online]. Available: https://developer.
arm.com/tools-and-software/development-boards/iot-test-chips-and-
boards/musca-b-test-chip-board (accessed Sep. 30, 2021).

[31] “nRF5340.” [Online]. Available: https://www.nordicsemi.com/Products/
nRF5340 (accessed Sep. 30, 2021).

[32] “LPC55s69-EVK: LPCXpresso55s69 Development Board.” [Online].
Available: https://www.nxp.com/design/development-boards/lpcxpresso-
boards/lpcxpresso55s69-development-board:LPC55S69-EVK (accessed
Sep. 30, 2021).

[33] “STM32l562E-DK Discovery Kit.” [Online]. Available: https://
www.st.com/en/evaluation-tools/stm32l562e-dk.html (accessed Sep. 30,
2021).

[34] “Numicro M2351 Series—A TrustZone Empowered Microcontroller
Series Focusing on IoT Security.” [Online]. Available: https://www.
nuvoton.com/products/microcontrollers/arm-cortex-m23-mcus/m2351-
series/?__locale=en (accessed Sep. 30, 2021).

[35] J. Ganssle. “A Designer’s Guide to Watchdog Timers.” Digikey. 2012.
[Online]. Available: https://www.digikey.com/en/articles/a-designers-
guide-to-watchdog-timers

[36] T. Abera et al., “C-FLAT: Control-flow attestation for embedded systems
software,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2016, pp. 743–754.

[37] D. Rosenberg, “QSEE TrustZone kernel integer over flow vulnerability,”
in Proc. Black Hat Conf., 2014, p. 26.

[38] U. Kanonov and A. Wool, “Secure containers in android: The Samsung
KNOX case study,” in Proc. 6th Workshop Security Privacy Smartphones
Mobile Devices, 2016, pp. 3–12.

[39] P. Guo, Y. Yan, C. Zhu, and J. Wang, “Research on arm TrustZone
and understanding the security vulnerability in its cache architecture,” in
Proc. Int. Conf. Security Privacy Anonymity Comput. Commun. Storage,
2020, pp. 200–213.

[40] N. Koutroumpouchos, C. Ntantogian, and C. Xenakis, “Building trust
for smart connected devices: The challenges and pitfalls of TrustZone,”
Sensors, vol. 21, p. 520, Jan. 2021.

[41] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted tee systems,”
in Proc. IEEE Symp. Security Privacy (S&P), San Francisco, CA, USA,
2020, pp. 18–20.

[42] A. K. Iannillo and R. State, “A proposal for security assessment of
TrustZone-M based software,” in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops (ISSREW), Berlin, Germany, 2019, pp. 126–127.

Lan Luo received the B.S. degree in electrical engi-
neering from the Civil Aviation University of China,
Tianjin, China, in 2015, and the M.S. degree in
computer engineering from the University of Central
Florida, Orlando, FL, USA, in 2018, where she is
currently pursuing the Ph.D. degree in computer
science.

Her research interests mainly cover security and
privacy of Internet of Things, security of embed-
ded system, network and software security, and
trustworthy computing.

Yue Zhang received the Ph.D. degree from the
College of Information Science and Technology
and College of Cyber Security, Jinan University,
Guangzhou, China, in 2020, under the supervision
of J. Weng.

He also studied and worked with the University
of Central Florida, Orlando, FL, USA, and the
University of Massachusetts Lowell, Lowell, MA,
USA, under the supervision of X. Fu. He has pub-
lished papers in international conferences and jour-
nals, such as USENIX Security, IEEE INFOCOM,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, and RAID. His research
focuses on system security, especially IoT security.

Clayton White received the B.S. degree in elec-
trical engineering and the B.S. degree in computer
engineering from the University of Central Florida,
Orlando, FL, USA, in 2021.

He is currently employed as a Hardware Systems
Integrator with Google, Mountain View, CA, USA.
His current research interests include Internet of
Things, embedded data acquisition, and various
VLSI design projects.

Brandon Keating received the B.Sc. and M.Sc.
degrees in electrical engineering from the University
of Massachusetts Lowell, Lowell, MA, USA, in
2020 and 2021, respectively.

He currently works as an Electrical Design
Engineer with Globus Medical, Audubon, PA, USA,
concentrating on medical robotics which specialize
in spinal and cranial surgery operations. His tech-
nical interests cover a multitude of robotics-focused
design platforms, including 3-D CAD design, elec-
trical design, PCB layout, and firmware.

Bryan Pearson received the B.S. degree in com-
puter science from Stetson University, DeLand, FL,
USA, in 2018. He is currently pursuing the Ph.D.
degree in computer science with the University of
Central Florida, Orlando, FL, USA.

His papers have been published at conferences,
such as INFOCOM, ICC, ICPADS, and IFIP. His
research interests include software and network
security of Internet of Things devices and commu-
nication protocols, binary analysis, and fuzz testing.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9699

Xinhui Shao received the B.S. degree in com-
munication engineering from Shanghai University,
Shanghai, China, in 2019. He is currently pursuing
the master’s degree in cyber science and engineering
with Southeast University, Nanjing, China.

His current research interests include Internet of
Things, privacy, and security.

Zhen Ling (Member, IEEE) received the B.S.
degree in computer science from Nanjing Institute
of Technology, Nanjing, China, in 2005, and the
Ph.D. degree in computer science from Southeast
University, Nanjing, in 2014.

He is a Professor with the School of Computer
Science and Engineering, Southeast University. His
research interests include network security, privacy,
and Internet of Things.

Prof. Ling won the ACM China Doctoral
Dissertation Award and the China Computer

Federation Doctoral Dissertation Award, in 2014 and 2015, respectively.

Haofei Yu received the B.S. degree in environmen-
tal engineering from Hangzhou Dianzi University,
Hangzhou, China, in 2005, the M.S. degree in
environmental engineering from the University of
Shanghai for Science and Technology, Shanghai,
China, in 2008, and the Ph.D. degree in environ-
mental health from the University of South Florida,
Tampa, FL, USA, in 2013.

He was a Postdoctoral Fellow with Georgia
Institute of Technology, Atlanta, GA, USA, and
Pacific Northwest National Laboratory, Richland,

WA, USA. He is currently an Assistant Professor of Environmental
Engineering with the University of Central Florida, Orlando, FL, USA. His
research interests mainly focus on air quality modeling, emission estimation,
exposure assessment, and low-cost air quality sensors.

Cliff Zou (Senior Member, IEEE) received the B.S.
and M.S. degrees from the University of Science
and Technology of China, Hefei, China, in 1999 and
1996, respectively, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
University of Massachusetts at Amherst, Amherst,
MA, USA, in 2005.

He is an Associate Professor with the Department
of Computer Science, the Program Coordinator of
both Digital Forensics Master program and Cyber
Security and Privacy Master Program, University

of Central Florida, Orlando, FL, USA. He has published more than 100
peer-reviewed research papers, and has obtained more than 7300 Google
Scholar Citations. His research interests focus on cybersecurity and computer
networking.

Xinwen Fu (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1995, the M.S.
degree in electrical engineering from the University
of Science and Technology of China, Hefei, China,
in 1998, and the Ph.D. degree in computer engineer-
ing from Texas A&M University, College Station,
TX, USA, in 2005.

He is a Professor with the Department of
Computer Science, University of Massachusetts
Lowell, Lowell, MA, USA. He was a Tenured

Associate Professor with the Department of Computer Science, University
of Central Florida, Orlando, FL, USA. He has published at prestigious con-
ferences, including the four top computer security conferences (Oakland,
CCS, USENIX Security, and NDSS), and journals, such as ACM/IEEE
TRANSACTIONS ON NETWORKING (ToN) and IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING (TDSC). He spoke at various tech-
nical security conferences, including Black Hat. His current research interests
are in computer and network security and privacy.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

