
An adaptive adjusting mechanism for agent distributed

blackboard architecture

Y.C. Jianga,*, Z.Y. Xiab, Y.P. Zhonga, S.Y. Zhanga

aDepartment of Computing & Information Technology, Fudan University, Shanghai 200433, China
bDepartment of Computer, Nanjing University of Aeronautics and Astronautics, Nanjing 210043, China

Received 23 November 2003; revised 11 May 2004; accepted 5 June 2004

Available online 1 July 2004

Abstract

Distributed blackboard is one of the popular agent communication architectures. However, in current agent systems, the distributed

blackboard architecture is kept fixed after its initial setting, which may influence the system performance when network topology or agent

cooperation relations are changed during operation. To solve the problem, this paper presents a novel mechanism for adjusting agent

communication architecture. Based on graph theory, this mechanism provides a way to adjust the distributed blackboard architecture. The

adjustment made to the architecture kept its validity, and the adjusted architecture outperforms the initial one in new network topology or

agents cooperation relations, which are proved by the Mobile Ambients Calculus analysis and the simulation experiments. Therefore, the

adjusting mechanism presented here can achieve the adaptation of the agent communication architecture to the changes of the network

topology and agent cooperation relations.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Multi agents; Agents communication; Distributed blackboard; Network topology; Agent cooperation

1. Introduction

In multi-agent systems, cooperation will enable agents to

solve the problems that cannot be solved by individual one.

To implement cooperation among agents, there is a

significant demand for agents to communicate with each

other effectively. Nowadays, the communication architec-

tures that commonly used include the message architecture

[2,6] and blackboard communication architecture [3,5].

In the message architecture, there is a direct exchange of

messages between agents using a common language in a

conversational style, where the sending agent specifies for

whom the message is intended and the receiving agent

accepts the message when it is reached. Obviously, the

message architecture is simple and effective. However, it

also has some disadvantage [1]. One of the problems with

this architecture is that the overheads in message transfer are

quite high if the agent community is large, and another

problem is the implementation complexity.

By contrast, in the blackboard communication architec-

ture, information is made available to all agents in the system

through a common information space and there is no direct

communication between agents. Obviously, the message

overheads and implementation complexity of blackboard

architecture are relative low. Blackboard communication

architecture is well suited for dynamic and large agent

systems.

Blackboard communication architecture includes central

blackboard architecture and distributed one, as shown in

Fig. 1. Central blackboard architecture is simple. However,

in this architecture the blackboard is subject to become the

‘performance bottleneck’ of agent system. A popular way of

enhancing communication architecture is to implement

distributed blackboard architecture, in which some sub-

blackboards are set in the system and each sub-blackboard

takes charge of the communications of some agents [1].

Here agents are organized into some federated systems

where agents do not communicate directly with each other

but through their respective sub-blackboards. The agents in

a federated system surrender their communication auton-

omy to the sub-blackboards and the sub-blackboard takes

full responsibility for their needs. Fig. 1 shows a simple

federated multi-agents system in which there are three

multi-agent sub-systems (i.e. federated systems) with

agents in each sub-system controlled by a sub-blackboard.

0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.06.001

Microprocessors and Microsystems 29 (2005) 9–20

www.elsevier.com/locate/micpro

* Corresponding author. Tel.: þ86-21-6564-3235; fax: þ86-21-6564-

7894.

E-mail address: jiangyichuan@yahoo.com.cn (Y.C. Jiang).

http://www.elsevier.com/locate/micpro

The sub-blackboards communicate among themselves to

express the needs of their respective agents.

Nowadays, there is an emerging phenomenon that

network topology is changed after the initial setting of a

system. Therefore, the agent communication architecture in

such situation needs to be adjusted accordingly. Moreover,

the variety of agent cooperation relations also demands that

the agent communication architecture should be adjusted

effectively when agent cooperation relations are changed.

However, there are few researches on the adjusting of agent

communication architecture for network topology and agent

cooperation relations, currently and, agent communication

architecture is fixed after its initial setting, which may

influence the system performance when network topology

or agent cooperation relations are changed.

To solve the above problem, based on distributed

blackboard architecture and graph theory, this paper

presents a novel mechanism for adjusting agent communi-

cation architecture. According to the current network

topology and agents cooperation relations, this mechanism

can adjust the setting of distributed blackboard architecture

(e.g. sub-blackboard locality, federated system construc-

tion, message transfer path, etc.). The new adjusted

architecture performs better than the initial architecture in

new network topology and agent cooperation relations,

which is testified by our simulation experiments.

The rest of the paper is organized as follows. Section 2

presents the related definitions. Section 3 addresses the

detailed adjusting mechanism of agent communication

architecture. Section 4 makes analysis and validation based

on Mobile Ambients. Section 5 describes simulation experi-

ment. Then the conclusions are summarized in Section 6.

2. Related definitions

To describe the cooperation relations among agents in

multi-agent system, we present the concept of Agents

Cooperation Relations Graph (ACRG).

Definition 1. Agents Cooperation Relations Graph

(ACRG): ACRG ¼ ðV ;EÞ; where:

2V ¼ {a1; a2;…; an}; where ai denotes agent i;

2E # V £ V ; E ¼ {e1; e2;…; en}; where ei

¼ ðau; avÞ denotes the cooperation relation between

agent au and agent av:

From the example of ACRG in Fig. 2, we can see that a1

cooperates with a2; a4; a5 and a8; a2 cooperates with a1; a5

and a6; a3 cooperates with a5; a8 and a9; etc.

Definition 2. Network Topology Graph (NTG) denotes

the network topology on which agent system runs.

NTG ¼ ðV 0;E0Þ; where:

2V 0 ¼ {N1;N2;…;Nn}; Ni denotes the network node;

2E0 # V 0 £ V 0
; E0 ¼ {e01; e

0
2;…; e0n}:

e0i ¼ðNu;NvÞ which denotes the interconnection relation

between network nodes Nu and Nv:

E.g. Fig. 3 is a NTG where the agent system runs. From

Fig. 3, we can see that agent a1 locates on the node N1; a2

locates on N3; a3 locates on N4; a4 locates on N6; a5 locates

on N7; a6 locates on N8; a7 locates on N9; a8 locates on N10;

and a9 locates on N11:

Fig. 1. Blackboard communication architecture.

Fig. 2. An agent cooperation relation graph (ACRG).

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2010

Therefore, Fig. 3 can definitely describe a multi-agent

system with the cooperation relations that shown in Fig. 2.

Definition 3. Agents Communication Topology Graph

(ACTG): ACTG denotes the topology graph that is

composed of agent communication paths in the underlying

network environment. Since the agent communication often

goes along the shortest path between the nodes on which

agents locates, ACTG is composed of the shortest paths

between nodes on which cooperated agents locates.

ACTG ¼ ðV 00;E00Þ; where:

– if the agent on Ni cooperates with the one on Nj; then

Ni;Nj [V 00;

– if the agent on Ni cooperates with the one on Nj; then

the edges along the shortest path between Ni and Nj are

attributed to E00:

The ACTG of the agents system shown in Figs. 2 and 3

can be seen in Fig. 5.

From above description, we know that ACTG can

describe the agent communication situation well, and the

agent communication architecture should be adjusted based

on ACTG.

Therefore, the question of ‘Adjusting mechanism of

agent communication architecture’ can be described as

follows: when network topology or agent cooperation

relations are changed, the ACTG should be computed

according to current NTG and ACRG, and the setting of

distributed blackboard architecture (e.g. sub-blackboard

locality, federated system construction, message transfer

path, etc.) is adjusted on the base of the new ACTG.

3. Adjusting of agent communication architecture

3.1. The overall framework

To adapt to the change of network topology and agent

cooperation relations, we present the adjusting mechanism

of agent communication architecture. The mechanism can

adjust the agent communication architecture according to

the current agents cooperation situation (ACRG) and

network topology (NTG). Through this mechanism, agents

can implement effective communication in the light of the

new adjusted architecture, thereby the agent communication

adaptation for new network topology and agent cooperation

relations can be satisfied. The overall flow chart of the

mechanism is shown as Fig. 4.

In our adjusting mechanism, there is a management

station in the network. The management station can monitor

the change of underlying network topology and agent

cooperation relations, and adjust the distributed blackboard

communication architecture accordingly.

We will introduce the principle of the mechanism in the

following sub-sections.

3.2. Computing the ACTG

When the network topology is changed, we compute the

ACTG according to the new NTG and current Agent

Cooperation Relations Graph (ACRG).

Fig. 3. A network topology graph and agent system.

Fig. 4. Flow chart of the adjusting mechanism.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–20 11

ACTG is composed of the shortest paths between nodes

on which cooperated agents locate. Therefore, let ai

cooperates with aj; and ai locates on Ni; aj locates on Nj;

then the shortest path between Ni and Nj is attributed to

ACTG.

We can describe the NTG as a weighted graph. Let the

weight on each edge be the communication cost from a

vertex of the edge to another vertex. The memory structure

of NTG is an adjacency matrix cost½i; j�; where if there is a

edge from Ni to Nj; cost½i; j� ¼ the weight of the edge, or

else cost½i; j� ¼ 1:

The detailed ACTG computing process can be seen in

Algorithm 1.

Algorithm 1. Computing the Agents Communication

Topology Graph (ACTG).

void short_path (cost, dist, path)

/*cost[i,j] denotes the adjacency matrix of NTG, dist[i,

j] denotes the distance of the shortest path between Ni

and Nj; path[i, j] denotes the shortest path between Ni

and Nj: */

{

for (int i ¼ 1; i , ¼ n; iþþ)

for (int j ¼ 1; j , ¼ n; jþþ)

{dist [i, j] ¼ cost[i, j];

if (dist[i, j] ,max

path[i, j] ¼ [i] þ [j];

}

for (int k ¼ 1; k , ¼ n; kþþ)

for (int i ¼ 1; i , ¼ n; iþþ)

for (int j ¼ 1; j , ¼ n; jþþ)

if (dist[i, k] þ dist[k, j] , dist[i, j])

{ dist[i, j] ¼ dist[i,k] þ dist [k,j];

path[i, j] ¼ path[i, k] þ path[k, j];

}

}

main ACTG_computing ()

{

ACTG ¼ {};

short_path (cost, dist, path);

for (int i ¼ 1; i , ¼ n; iþþ)

for (int j ¼ 1; j , ¼ n; jþþ)

{ if the agent on Ni cooperates with the agent on

Nj

then ACTG ¼ ACTG þ path[i, j]

}

}

We can compute the ACTG of the agents system in Fig. 3

with the cooperation relations in Fig. 2 according to

Algorithm 1, the result is shown as Fig. 5. In Fig. 5, the

over striking line denotes the communication paths. To

improve the readability, other edges are also added to the

graph with dashed line.

3.3. Constructing the spanning tree of ACCTG

In some hierarchical agent systems, there is a manage-

ment agent that controls other agents. In these systems,

many communications take place between the management

agent and other agents. Under such situation, we can adjust

the agent communication architecture according to the

spanning tree of ACTG. The validity of this method can be

testified in the simulation experiment.

We select the node on which the management agent

locates as the original one, and adopt the well-known Prim’s

Algorithm for finding the minimum cost spanning tree [4] to

construct the spanning tree of ACCTG. The detailed

algorithm can be seen in Ref. [4].

Therefore, the spanning tree of Fig. 5 is shown as Fig. 6.

3.4. Adjusting the setting of distributed blackboard

architecture

After ACTG is computed, we can adjust the setting of

distributed blackboard architecture. The process includes

the adjustments of the following three parts: sub-blackboard

locality, federated system construction, message transfer

path construction.

3.4.1. Adjustment of sub-blackboard locality

When network topology is changed, the sub-blackboard

locality should be changed too. We select some nodes as

sub-blackboard localities according to the ACTG or its

spanning tree. We can consider the problem under two

situations: one situation is that all agents are equal, and there

aren’t any management agents in the system; another

situation is that agent organization is hierarchical, and there

Fig. 6. Spanning tree of ACTG.

Fig. 5. Agent communication topology graph (ACTG).

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2012

is a management agent in the system. Under the first

situation, we can select some nodes as sub-blackboards

localities according to the ACTG. Under the second

situation, we can select the nodes as sub-blackboards

localities according to the spanning tree of ACTG.

Then how to select sub-blackboard locality according to

ACTG or its spanning tree? We can select the nodes with

high degree1 in ACTG or its spanning tree. In this way the

communication cost can be lessened, which is also testified

by our simulation experiments.

Let the number of sub-blackboards is 3, now we take the

agent system in Fig. 2 and Fig. 3 as an example.

If all agents are equal and there aren’t any management

agents in the system, we select N6;N7 and N4 as sub-

blackboard localities since these three nodes have high

degrees in Fig. 5, as shown in Fig. 7.

If the agent organization is hierarchical, and there is a

management agent a1 in the system, we can select N1;N3

and N6 as sub-blackboard localities as these three nodes

have high degrees in Fig. 6, as shown in Fig. 8.

3.4.2. Adjustment of federated system construction

After the adjusting of sub-blackboard locality, agents

should be organized into some federated systems where

agents do not communicate directly with each other but

through their respective sub-blackboards.

Which sub-blackboard will an agent surrender its

communication autonomy to? In this paper, for simplicity,

each agent can select the nearest sub-blackboard to

surrender its communication autonomy.

Otherwise, considering the request of mobile agent, those

nodes on which no agents locate now should also select a

sub-blackboard. Obviously, they should select the nearest

blackboard, too. In Fig. 7, N2 and N5 select the sub-

blackboard on N6; and N12 selects the sub-blackboard on N7:

In Fig. 8, N2 selects the sub-blackboard on N1;N5 selects

the sub-blackboard on N6; and N12 selects the sub-

blackboard on N3:

Now we take the agent system in Figs. 2 and 3 as an

example, if the sub-blackboards are located on N6;N7 and

N4; the constructed federated systems are shown in Fig. 7; if

the sub-blackboards are located on N1;N3 and N6; the

constructed federated systems are shown in Fig. 8.

3.4.3. Adjustment of message transfer path construction

Now we construct the factual agent message transfer

paths in the federated systems.

We compute the shortest path from the nodes to the sub-

blackboard in each federated system and the shortest paths

among sub-blackboards. Thereby the factual agent message

transfer path can be composed of those shortest paths,

shown as Figs. 9 and 10. The agents in a federated system

communicate with the sub-blackboard and the sub-black-

boards communicate among themselves to express the

needs of their respective agents.

The format of message is as follows: sender location,

receiver location, content. Among those the sender location

Fig. 7. Federated systems 1.

Fig. 8. Federated systems 2.

Fig. 9. Agent communication architecture (1).

1 The degree of a vertex in a graph is the number of the edges that connect

the vertex.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–20 13

and receiver location both contain two parts: name of

federated system and name of node on which agent locates.

Sender agent firstly transfers the message to the sub-

blackboard, if the sub-blackboard finds that the receiver

location doesn’t belong to it’s federated system, it forwards

the message to the sub-blackboard that controls receiver

agent, and then the receiver sub-blackboard re-transfers the

message to the receiver agent.

3.4.4. Coping with mobile agent

There are two situations under which agent moves. One

is that agent moves to another node within the same

federated system. The other is that agent moves to another

node beyond the federated system. Under the first situation,

the agent only notifies the place where it is now located to

the sub-blackboard. Under the second situation, when the

agent moves to a new federated system, the agent firstly

notifies the name of its home sub-blackboard (Home-

blackboard) to the sub-blackboard of current system

(Proxy-blackboard), then proxy-blackboard tells the

Home-blackboard that the agent come here. This process

can be called Agent Location Renew Process (ALRP).

Wherever the mobile agent moves, it registers new address

on its Home-blackboard through ALRP.

Now, let other agent (e.g. aÞ want to communicate with

the mobile agent (e.g. mÞ; and the Home-blackboard of m be

B1;the Proxy-blackboard of m be B2: At the first communi-

cation, a firstly transfers the message to B1 and B1 then

transfers the message to B2; then B2 transfers the message to

m: Then B1 tells a about the address of the B2; and B2

becomes the new Home-blackboard of m: At afterwards

communication, a can transfer the message to B2 directly,

and B2 forwards the message to m:

Now we take Fig. 9 as an example. If a1 moves to N12; a1

firstly tells the sub-blackboard on N7 that its Home-

blackboard locates onN6; then the sub-blackboard on N7

tells the sub-blackboard on N6 that a1 has moved into its

federated system.

– Let a7 want to communicate with a1; it firstly sends the

message to N6; then N6 sends the message to N7; at last

N7 sends the message to a1:

– Let a9 want to communicate with a1; it firstly sends the

message to N7; since N7 knows that a1 is in its realm so

N7 sends message to a1 directly.

– Let agent ax in other federated system of Bx want to

communicate with a1; it firstly sends the message to

Bx, then Bx sends the message to N6; and N6 sends

the message to N7; then at last N7 sends the

message to a1:

The whole processes can be seen in Fig. 11.

Fig. 10. Agent communication architecture (2).

Fig. 11. The example of agents message transfer process.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2014

4. Analyses and validation based on Mobile Ambients

Mobile Ambients Calculus was developed by Cardelli

and Gordon as a formal framework to study issues of

mobility and migrant code [7]. Boxed Ambients are a

variant of Mobile Ambients, from which they inherit the

primitives in and out for mobility, with the exact same

semantics. But, Boxed Ambients also rely on a

completely different model of communication, which

results in dropping the open capability [8]. In this paper,

we combine the original Mobile Ambients and Boxed

Ambients, and reserve the open primitive to analyze and

validate the correctness of the adjusted communication

architecture.

To test the correctness of the adjusted agent communi-

cation architecture, we make analysis for the communi-

cation architecture in Fig. 10 based on Mobile Ambients and

Boxed Ambients.

We denote the federated system with the sub-blackboard

locating on N1 as b1; the federated system with the sub-

blackboard locating on N6 as b2; the federated system with

the sub-blackboard locating on N3 as b3: We call the three

sub-blackboards on N1;N6; and N3 as Blackboard1,

Blackboard2 and Blackboard3 respectively.

In followings, WðxÞ denotes that agent transfers message

to the Home-blackboard, RðxÞ denotes that Home-black-

board transfers message to agent, and SðxÞ denotes that the

message is stored in the blackboard.

4.1. The communication between two agents within the same

federated system

In Fig. 10, let a7 want to send message to a8, now we

describe the ingredients of the communication process

based on Mobile Ambients, shown follows:

a7 W b2½kx1l:Wðx1Þ�; Blackboard

W b2½ðx2Þ:Sðx2Þlkx2l�; a8 W b2½ðx3Þ:Rðx3Þ� ð1Þ

The whole communication process can be simulated by

Mobile Ambients Calculus as follows:

Communication W a7lBlackboardla8

; b2½kx1l:Wðx1Þlðx2Þ:Sðx2Þlkx2llðx3Þ:Rðx3Þ�

! b2½Wðx1ÞlSðx1Þlkx1llðx3Þ:Rðx3Þ�

! b2½Wðx1ÞlSðx1ÞlRðx1Þ� ð2Þ

From Eq. (2), it is obvious that a7 can successfully

transfer the message to a8; which proves that the

architecture in Fig. 10 is correct for the agent communi-

cation within a federated system.

4.2. The communication between two agents in different

federated systems

In Fig. 10, let a7 want to transfer message to a3; now we

simulate the communication process based on Mobile

Ambients and Boxed Ambients Calculus. Here, since

Blackboard2 not only communicates with the agents in its

own federated system but also communicates with other

sub-blackboards, the ambient can’t be denoted as b2 but two

ambients: one is b0
2 that denotes the communication ambient

in which the agents within the federated system commu-

nicates with Blackboard2, other is b00
2 that denotes the

communication ambient in which Blackboard2 communi-

cates with other sub-blackboards. Similarly, b0
3 denotes the

communication ambient in which the agents within the

federated system communicates with Blackboard3, and b00
3

denotes the communication ambient in which Blackboard3

communicates with other sub-blackboards.

Now we describe the ingredients of the communication

process based on Mobile Ambients, shown as follows:

a7 W b0
2½kx1l:Wðx1Þ�; Blackboard2

W ðx2Þ
b02 :ðb0

2½Sðx2Þ�lb00
2½kx2llin b00

3�Þ; Blackboard3

W ðx3Þ
b002 :ðb00

3½Sðx3Þlopen b00
2�lb0

3½kx3l�Þ; a3

W ðx4Þ
b03 :ðb0

3½Rðx4Þ�Þ ð3Þ

The whole cooperation communication process can be

simulated by Mobile Ambients and Boxed Ambients

process, shown as follows:

Communication W a7lBlackboard2lBlackboard3la3

; b0
2½kx1l:Wðx1Þ�lðx2Þ

b02 :ðb0
2½Sðx2Þ�lb00

2½kx2llin b00
3�Þ

� lðx3Þ
b002 :ðb00

3½Sðx3Þlopen b00
2�lb0

3½kx3l�Þlðx4Þ
b03 :b0

3½Rðx4Þ�

! b0
2½Wðx1Þ�lðb0

2½Sðx1Þ�lb00
2½kx1llin b00

3�Þ

� lðx3Þ
b002 :ðb00

3½Sðx3Þlopen b00
2�lb0

3½kx3l�Þlðx4Þ
b03 :b0

3½Rðx4Þ�

! b0
2½Wðx1Þ�lb0

2½Sðx1Þ�lb00
3½Sðx1Þ�lb0

3½kx1l�lðx4Þ
b03 :

� b0
3½Rðx4Þ�! b0

2½Wðx1Þ�lb0
2½Sðx1Þ�lb00

3½Sðx1Þ�lb0
3½Rðx1Þ�

ð4Þ

From Eq. (4), it is clear that a7 can successfully transfer

the message to a3; which proves that the architecture in

Fig. 10 is correct for the agent communication between two

different federated systems.

4.3. The communication between the mobile agents

In Fig. 10, let a7 communicates with a8; but a8 now

migrates onto N12: In such a communication process, after

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–20 15

A8 migrates onto N12; the ALRP is executed according

Section 3.4.4. Then the communication process between A7

and A3 is similar to the one of Section 4.2.

From the above three simulation processes based

on Mobile Ambients, we can see that the adjusted

communication architecture is correct for the following

three situations: the communication between two agents

within the same federated system; the communication

between two agents in different federated systems; the

communication between the mobile agents. Therefore, the

adjusting mechanism can produce correct communication

architecture.

Fig. 12. Changing network topology for simulation experiment.

Fig. 13. Communication architecture by using initial distributed blackboards (for changed network topology).

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2016

5. Simulation experiments

For the purpose of our experiment, we have developed a

minimal platform that provides the basic functions required

to program agents. By studying from the method of [9], we

have implemented a prototype which is developed with

Tcl/Tk, Tclx, Tix and Binprolog [10–12]. And the prototype

was also partly based on the work of Aglets Software

Development Kit v2 (Open Source release) [13,14].

In order to show how effectively our proposed mechan-

ism can work, we compare the performance of the original

distributed blackboard architecture and the adjusted one

when network topology and agent cooperation relations are

changed, shown in Section 5.1, 5.2 and 5.3.

5.1. Test for changed network topology

We take the ones in Figs. 2 and 3 as the initial agent

cooperation relations and network topology for our

experiments. The initial distributed blackboard architecture

is shown in Fig. 9.

Then, we change the network topology as Fig. 12; the

agent cooperation relations keep unchanged, shown as Fig. 2.

If the initial distributed blackboard architecture is still used

(i.e. the localities of sub-blackboards are kept the same), the

federated systems and message transfer paths are shown in

Fig. 13. If we adjust the distributed blackboard architecture

according to the mechanism presented here, the federated

systems and message transfer paths are shown in Fig. 14.

In the simulation experiment, all agents cooperate

according to the ACRG in Fig. 2. Let each agent send a

message to its cooperation partner, now we test the total

communication time under the initial architecture and the

adjusted architecture.

The test results are shown as Fig. 15. From Fig. 15, we

can conclude that: when network topology is changed, the

total agent communication time in the adjusted architecture

is less than the one in the original architecture that uses the

initial distributed blackboard. Therefore, the adjusting

mechanism is efficient when network topology is changed.

5.2. Test for changed agent cooperation relations

Now we test the efficiency of the adjusting mechanism

when agent cooperation relations are changed.

The agent cooperation relations are changed as Fig. 16;

the network topology keeps unchanged, shown as Fig. 3.

Fig. 14. Communication architecture after adjusting (for changed network topology).

Fig. 15. Test for changed network topology.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–20 17

If the initial distributed blackboard architecture is still used

(i.e. the localities of sub-blackboards are kept the same), the

federated systems and message transfer paths are the same

as the one in Fig. 9. If we adjust the distributed blackboard

architecture according to our mechanism, the federated

systems and message transfer paths are shown in Fig. 17.

We test the total communication time under the initial

architecture and adjusted architecture. The test results are

shown as Fig. 18. From Fig. 18, we can conclude that:

when agent cooperation relations are changed, the total

agent communication time in the adjusted architecture is

less than the one in the original architecture that uses

Fig. 16. Changing agent cooperation relations for simulation experiment.

Fig. 17. Communication architecture after adjusting (for changed agent cooperation relations).

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2018

the initial distributed blackboard. Therefore, the adjusting

mechanism is efficient when agent cooperation relations

are changed.

5.3. Test for hierarchical agent cooperation relations

Now we test the adjusting mechanism in the hierarchical

agent system that has a management agent. The agent

cooperation relations graph is tree-like, shown as Fig. 19.

We compare the performance of three communication

architectures when network topology is changed: a: The one

that uses the initial sub-blackboards (i.e. the localities of

sub-blackboards keep unmovable); b: The one adjusted

according to the ACTG; c: The one adjusted according to

the spanning tree of the ACTG.

The description of the adjusted architectures was omitted

here for brevity. The test results are shown in Fig. 20, from

which we can see that: the total communication time of b is

less than that of a; and c consumes the least amount of

communication time. Therefore, when agent system is

hierarchical and there is a management agent, we should

adjust the communication architecture according to the

spanning tree of the ACTG.

6. Conclusion

Based on graph theory and distributed blackboard

architecture, a novel mechanism for adjusting agent

communication architecture is presented in this paper.

When network topology or agent cooperation relations are

changed, this mechanism can be used to adjust the

distributed blackboard architecture accordingly. The new

adjusted architecture is correct and can perform better than

the original one in new network topology or agent

cooperation relations, which is testified by the Mobile

Ambients Calculus analysis as well as the simulation

experiments.

However, in the adjusting mechanism presented here, the

adjusting process is time-consuming. If network topology

changes very frequently and the interval is short, the current

mechanism can’t satisfy the requirement. Therefore, our

future works will focus on the improvement of the real-time

property of adjusting mechanism.

Additionally, when the agent cooperation relations are

only trivially changed, the performance difference isn’t

distinct between adjusted communication architecture and

the original communication architecture. Therefore, in

factual application we adjust the communication architec-

ture only when the agent cooperation relations are changed

substantially.

In our adjusting mechanism, there is a management

station in the network to monitor the change of underlying

network topology and agent cooperation relation, and adjust

the agents communication architecture. The setting of a

management station can implement the adjusting mechan-

ism effectively and simply, but it may also bring out single

point failure. Therefore, our future work will also focus on

the distributed implementation of the adjusting mechanism.

References

[1] Cyprian Foinjong Ngolah, A tutorial on agent communication and

knowledge sharing. Available at http://www.enel.ucalgary.ca/People/

far/Lectures/SENG60922/PDF/tutorials/2002/Agent_Communication_

and_Knowledge_Sharing.pdf

Fig. 19. Agent cooperation relations with a management agent.

Fig. 18. Test for changed agent cooperation Relations.

Fig. 20. Test for hierarchical agent system.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–20 19

http://www.enel.ucalgary.ca/People/far/Lectures/SENG60922/PDF/tutorials/2002/Agent_Communication_and_Knowledge_Sharing.pdf
http://www.enel.ucalgary.ca/People/far/Lectures/SENG60922/PDF/tutorials/2002/Agent_Communication_and_Knowledge_Sharing.pdf
http://www.enel.ucalgary.ca/People/far/Lectures/SENG60922/PDF/tutorials/2002/Agent_Communication_and_Knowledge_Sharing.pdf

[2] FIPA Agent Message Transport Protocol for IIOP Specification

(XC00075D), October 2000, available at http://www.fipa.org/specs/

fipa00075/XC00075D.doc

[3] Francois Charpillet Philippe Lalanda, Jean-Paul Haton, A real time

blackboard based architecture, In ECAI92 10th European Conference

on Artificial Intelligence, 1992, pp. 262–266, ECAI, August 92.

[4] B.R. Preiss, Data structures and algorithms with object-oriented

design patterns in Cþþ , John Wiley & Sons, New York, 1999.

[5] V. Botti, A. Barber, A temporal blackboard for a multi-agent

environment, Data & Knowledge Engineering 15 (1995).

[6] D. Deugo, Mobile agent messaging models, In: Proceeding of Fifth

International Symposium on Autonomous Decentralized Systems

March 26–28, 2001.

[7] L. Cardelli, D. Gordon, Mobile ambients, Foundations of Software

Science and Computational Structures, LNCS No. 1378, Springer,

Berlin, 1998, pp. 140–155.

[8] M. Bugliesi, G. Castagna, S. Crafa, Boxed ambients, In 4th

International Conference on Theoretical Aspects of Computer Science

(TACS’01), vol. 2215, Springer-Verlag, Berlin, 2001.

[9] W. Cao, C.G. Bian, G. Hartvigsen, Achieving efficient cooperation in

a multi-agent system: the twin-base modeling, In Proceeding of

Cooperative Information Agents (CIA’97), Germany, LNAI, vol.

1202, Springer, Berlin, 1997, pp. 210–221.

[10] Tcl Developer Xchange: The Tcl and Tk Toolkit, Tcl /Tk Version

8.4.4. URL: http://www.tcl.tk/software/tcltk/8.4.html

[11] Tcl Contributed Archive: Extended Tcl (TclX), Version 7.0a. URL:

http://www.neosoft.com/tcl/. Neosoft Company, 2003.

[12] Home Page for Tix: Tk Interface eXtension: Tix-Programming

Library for the Tk Toolkit, Version 4.0. URL: http://tix.mne.com/.

2003.

[13] Internet Programming Toolkit: Binprolog Version 1.99. URL: http://

www.binnetcorp.com/BinProlog/, 1995.

[14] Aglets Software Development Kit: Aglets Software Development Kit

v2 (Open Source). URL: http://www.trl.ibm.com/aglets/. 2002.

Yichuan Jiang was born in 1975. He received his MS degree in

computer science from Northern Jiaotong University, China in 2002.

He is currently a PhD candidate in computer science of the Department

of Computing & Information Technology, Fudan University, China.

His research interests include mobile agent system, artificial intelli-

gence and network security.

Zhengyou Xia was born in 1974. He received his MS degree in fuse

technology from Nanjing University of Science & Technology in 1999,

and received his PhD degree in computer science from Fudan

University in 2004. He is currently a lecturer in the Department of

Computer, Nanjing University of Aeronautics and Astronautics, China.

His research interests include information security, mobile agent and

active network.

Siyong Zhan was born in 1950. He is now a professor and PhD

supervisor, and also the director of the Center of Networking &

Information Engineering of Fudan University, China. His research

interests include network system, mobile agent system and network

security.

Yiping Zhong was born in 1953. She is now an associate professor, and

also the associate director of the Department of Computing &

Information Technology of Fudan University, China. Her research

interests include network system and distributed system.

Y.C. Jiang et al. / Microprocessors and Microsystems 29 (2005) 9–2020

http://www.fipa.org/specs/fipa00075/XC00075D.doc
http://www.fipa.org/specs/fipa00075/XC00075D.doc
http://www.tcl.tk/software/tcltk/8.4.html
http://www.neosoft.com/tcl/
http://tix.mne.com/
http://www.binnetcorp.com/BinProlog/
http://www.binnetcorp.com/BinProlog/
http://www.trl.ibm.com/aglets/

	An adaptive adjusting mechanism for agent distributed blackboard architecture
	Introduction
	Related definitions
	Adjusting of agent communication architecture
	The overall framework
	Computing the ACTG
	Constructing the spanning tree of ACCTG
	Adjusting the setting of distributed blackboard architecture

	Analyses and validation based on Mobile Ambients
	The communication between two agents within the same federated system
	The communication between two agents in different federated systems
	The communication between the mobile agents

	Simulation experiments
	Test for changed network topology
	Test for changed agent cooperation relations
	Test for hierarchical agent cooperation relations

	Conclusion
	References

