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a b s t r a c t

With the development of large scale multiagent systems, agents are always organized in network
structures where each agent interacts only with its immediate neighbors in the network. Coordination
among networked agents is a critical issue which mainly includes two aspects: task allocation and load
balancing; in traditional approach, the resources of agents are crucial to their abilities to get tasks,which is
called talent-based allocation. However, in networked multiagent systems, the tasks may spend so much
communication costs among agents that are sensitive to the agent localities; thus this paper presents
a novel idea for task allocation and load balancing in networked multiagent systems, which takes into
account both the talents and centralities of agents. This paper first investigates the comparison between
talent-based task allocation and centrality-based one; then, it explores the load balancing of such two
approaches in task allocation. The experiment results show that the centrality-based method can reduce
the communication costs for single task more effectively than the talent-based one, but the talent-based
method can generally obtain better load balancing performance for parallel tasks than the centrality-
based one.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

A networked multiagent system can be shaped as a graph
consisting of agents (vertices) and interaction relations (edges).
Nowadays, with the development of large scale multiagent
systems, agents are always organized in network structures where
each agent interacts only with its immediate neighbors in the
networks [1,8]. For example, in a multiagent system simulating
corporation organization, the agents (which denote the people in
the corporation) can be organized by a network where each agent
only interacts with its immediate superiors, immediate underlings
and neighboring colleagues. Therefore, no matter how large the
corporation organization is, the agents only need to know the local
information in the network, which can significantly reduce the
complexity of system design.

In the networked multiagent systems, the tasks are imple-
mented by the collaboration of a large number of agents [19,12];
therefore, coordination among agents is considered as one of the
key issues to implement tasks effectively, which mainly includes
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two aspects: task allocation and load balancing [10,25,11,22,18,4,
13,6,16,23].

When the tasks come to a multiagent system, the first step
is to allocate the tasks to certain agents, which is called task
allocation [19,12,10,25,11,22]. Agent networks consist of numerous
agents with different resources [24,17]; in different applications,
resources to be placed in agent networks may have various
meanings [21]. For example, in a content distribution network,
the resources refer to the replicas of popular Web objects; in a
multiagent hotel-booking system, the resources refer to the data of
hotel information. Generally, the task allocation in previous related
work is always implemented based on resources; the number of
allocated tasks on an agent is always directly proportional to its
resources [22,18]. The resources owned by an agent are called its
talents, thus the traditional task allocation is based on agent talents.
In the talent-based task allocation, when a task needs a resource
unit, it may in many cases find an available unit in an ideal agent
who has such resource; therefore, the agents with more available
resources will have higher priority to obtain tasks.

However, in a networked multiagent system, each agent
interacts only with its immediate neighbors; thus in some
applications it is preferable if agents are able to coordinate with
nearby neighbors for implementing tasks, which can reduce the
communication costs among agents. Therefore, now it may be
better if the tasks are allocated to the agents that are near to each
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Fig. 1. An example of a networked multiagent system.

other in the network. Nowwe use an example to illustrate this idea
as follows.

Fig. 1 shows a networked multiagent system. Now let a task
come to the system whose required resource is r , and the execu-
tion of such task be: ‘‘let the set of agents be A, the allocated agentwill
collect some data from all other agents; after obtaining the data from
all other agents, the allocated agent will combine those intermediate
results together and use r to processing it ’’. Now, if only a7 has r , then
the task is allocated to a7 according to the traditional talent-based
method; the total communication costs to execute the task are:
{⟨a1–a4–a5–a7⟩, ⟨a2–a4–a5–a7⟩, ⟨a3–a5–a7⟩, ⟨a4–a5–a7⟩, ⟨a5–a7⟩,
⟨a6–a4–a5–a7⟩}. Let the distance between any two neighboring
agents be 1, thus the total communication costs are 14 units.

Now, if we allocate the task to a4, it will first collect the
data from other agents so that the total communication costs are
{⟨a1–a4⟩, ⟨a2–a4⟩, ⟨a3–a5–a4⟩, ⟨a5–a4⟩, ⟨a6–a4⟩, ⟨a7–a5–a4⟩}. After
then a4 sends the collected data to a7, and a7 will use r to process
the data; thus this communication cost is ⟨a4–a5–a7⟩. Therefore,
the total communication costs are 10 units if a4 is allocated with
the task. Since high communication costs significantly influence
the multiagent system performance [5], it is better to allocate task
to a4 than to a7 although a4 does not have the required talent. Thus
such task is sensitive to the localities of allocated agents, which is
called locality-sensitive task.

From the above example, we can see that the localities of
agents should be considered in the task allocation of networked
multiagent systems; however, most traditional task allocation
algorithms do not take locality into consideration. Though [2]
presented a locality-sensitive resource allocation model which
takes into account the distance between the requesting vertex and
the locality of resource, it did not make quantitative comparative
analyses between talents and localities of agents. Centrality is
one of the most important and widely used conceptual tools for
measuring the locality of agent in the network, which denotes
how centrally the agent locates in the network [3]. To solve such
problem, we investigate the locality-sensitive task allocation in
networked multiagents based on comparison between talent and
centrality, which gains some inspirations from [14] that addresses
the balance between experience and talent to shapes the structure
of the web.

On the other hand, if too many tasks are crowded on certain
agents that are rich of resources, then the tasks may be delayed
and do not get a quick response. Therefore, some tasks can be
switched to other agents with relatively fewer resources but lower
task loads, which is called load balancing. In the related work [18,
6,23], if there are too many tasks that queue for an agent, then
the probability of such agent to get new tasks will be reduced;
the migration of tasks is always implemented according to the
resource distribution, i.e., the tasks can be migrated from the
agents with rich resources to the agents with relatively poor
resources. However, such traditional load balancing method may
be not suitable to the locality-sensitive tasks. For example, in
Fig. 1, if a4 is crowded with too many tasks, then it may be better
to switch some tasks to a5 which is near to a4. Therefore, load
balancing should take into account the localities of agents; in
the related benchmark work, Chow and Kwok presented a novel
communication-based approach to multiagent load balancing,
which mainly concerns the localities of agents in the underlying
computer hosts [4,5]. Now, since the interaction localities of agents
are very important in the networked multiagent systems, in this
paper we will develop the load balancing method by taking into
account the agent centralities in themultiagent interaction networks.

The purpose of this paper is to explore the task allocation
in networked multiagent system, termed locality-sensitive task
allocation and load balancing; the basic idea is to utilize locality,
especially centrality, in order to reduce the locality-related costs
in the execution of tasks. This paper mainly investigates the
comparison between the talent- and centrality-based approaches,
and tries to find the effects of such two approaches in different
situations. The rest of this paper is organized as follows. In
Section 2, we describe the locality-sensitive tasks in networked
multiagents; in Section 3, we present the talent-based task
allocation and load balancing model; in Section 4, we present
the centrality-based task allocation and load balancing model; in
Section 5, we present comparative experiments and analyses for
the two models; in Section 6, we compare our work with the
related work; finally, we conclude our paper in Section 7.

2. Agent cooperation for locality-sensitive tasks

2.1. Cooperation among agents for tasks1

In networked multiagent systems, each agent interacts only
with its immediate neighbors in the network; communication
delay between two agents is proportional to the Euclidean distance
between them [1].

When a task comes to a multiagent system, it may be allocated
to an agent that will take charge of the implementation of such
task (the allocated agent is called principal one). If the principle
agent lacks necessary resources to implement the allocated
task, we can make it cooperate with other agents; if there are
some agents which have the required resources (we call those
cooperated agents that provide resources to implement task as
assistant agents), then the principal agent and assistant agents will
cooperate together to implement such task [10]. Obviously, the
communication cost between the principal agent and assistant
agents is a key for the performance of implementing such task,
and which is determined by the localities of and topology among
the principal agent and assistant agents. Therefore, now the
performance of such task is sensitive to the localities of allocated
agents; thus such task is locality-sensitive.

Then, which ones will be selected as assistant ones while the
principal agent is fixed? Tominimize the communication costs, the
principal agent can seek the assistant agents gradually from the
near to the distance in the network.

Definition 1 (Negotiation Gradation). Let a be the principal agent,
the agents in the nth round of negotiation of agent a are called the
contexts with gradation n.

Definition 2 (Resource Negotiation Topology (RNT)).A RNT of agent
a is a directed acyclic graph with single source a, the agents in the
graph are the ones cooperate with agent a, and the path length
from a to any other agents in RNT is such agent’s negotiation
gradation.

Let ai be the principal agent, and the resources owned by ai be
Rai; now, task t is allocated to ai, and the set of requested resources
for implementing t is Rt . Therefore, the set of lacking resources of
ai to implement t is Rt

ai :

Rt
ai = Rt − Rai . (1)

1 Some contents in Section 2.1 were presented in our previous paper in IEEE
TPDS [10].
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(i) Hierarchical multiagent structure. (ii) RNT of a22 .

(iii) Resource negotiation process of a22 to perform task t .

Fig. 2. An example for constructing the resource negotiation topology (RNT ) in a hierarchical multiagent network structure, in which it is assumed that a22 is the principal
agent.
Now it is assumed that agent aj is negotiated by ai, the set
of resources owned by aj is Raj. If aj has any resources that are
requested by ai to implement task t , then the set of resources that
aj can provide to ai for implementing t is:

Rt
aj→ai = {r|r ∈ Raj ∧ r ∈ Rt

ai}. (2)

Thus now the set of lacking resources of ai to implement t will
be deduced as:

Rt
ai = Rt

ai − Rt
aj→ai . (3)

We can let the principal agent ai negotiate with other agents
according to the RNT, until all requested resources are satisfied.

There are many kinds of network structures of multiagents,
among which the hierarchical structure is typical [15]; thus we
first address the negotiation of resources in hierarchical structures;
after that we will address the one in arbitrary network structures.
(1) Hierarchical structure

In the hierarchical structures, each agent can interact directly
only to its superiors and subordinates; thus agent will first
negotiate with its superiors or subordinates for resources.
Moreover, in the hierarchical organizations, resource negotiation
is always happened between pairs of actors that share the same
immediate superior; and actors will always negotiate resources
through the lowest common ancestor [7]. Therefore, let there be
an agent, a, we can make it negotiate with other agents according
to the following orders:
(a) the subordinates of agent a;
(b) the immediate superior of agent a;
(c) the sibling agents with the lowest common superiors.

Let a be the initiator agent, and the set of agents in the
network be A, now the resource negotiation process of agent a in
hierarchical structures is shown as Algorithm 1.

We can use the lay-based traversalmethod in tree to implement
the negotiation process in Algorithm 1, shown as Algorithm 2.
Complexity analyses of Algorithm 1 and 2: Let the number of all
agents be |A|, the height of hierarchical structure be h, now we
analyze the complexities of Algorithm 1 and 2, shown as follows.
• On the negotiation time: (1) Algorithm 2 is implemented based

on the lay-based tree traversal method whose time complexity
is O(|A|) [20], thus the complexity of Algorithm 2 is O(|A|);
(2) Algorithm 1 is mainly composed by Sentence (6.3) and
calling Algorithm 2, thus the complexity of Algorithm 1 is
O(|A| × h).

• On the message overheads: the message overheads are the
messages exchanged between the principal agent and all other
negotiation agents, which are mainly about the information of
resources. Obviously, themessage overheads in the network are
directly proportional to the communication distance between
principal agent andother agents, thuswhose complexity isO(h).

Example 1. In Fig. 2, (i) shows a hierarchical multiagent structure,
now let a22 be the principal agent, we can see the construction of
RNT according to Algorithm 1, shown as (ii). In Fig. 2, the set of
resources owned by agent a22 is {r1, r2}. Now a task t is allocated
to a22, and the resources requested by task t is {3r1, 3r2, 2r3};
obviously, a22 lacks the resources {2r1, 2r2, 2r3}. Now a22will make
resource negotiation with other agents; the negotiation process is
seen in (iii). Finally, the set of agents {a22, a32, a33, a11, a21} will
cooperate to implement task t .

Obviously, with Algorithm 1 and 2, we can constrain the
resource negotiation process in hierarchical structures as follows.

Lemma 1. If all resources for implementing task t can be satisfied by
using Algorithm 1 and 2, the set of assistant agents can satisfy one
of the following situations: (1) all assistant agents are located in the
subtree of principal agent; or (2) the immediate common ancestor
between the principal agent and all assistant agents is the lowest in
the tree (i.e., let such ancestor be a# and the distance from a# to the
root of tree be d#, it is impossible that there exists an agent whose
subordinates can provide all required resources for the principal agent
and its distance to the tree root is less than d#).

According to the information exchange criterion in [7], our
presented resource negotiation method has higher probability
to reduce the communication cost compared to other random
negotiation processes.
(2) Arbitrary structure

Tominimize the negotiation communication time,we canmake
principal agent negotiate with other agents for the requested
resources based on the Breadth-First Traversal method in graph.
The algorithm for the negotiation process within arbitrary struc-
ture is shown as Algorithm 3.
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Algorithm 1. Resource negotiation of agent a in a hierarchical structure.
/* Tx: the subtree whose root is agent x in the hierarchical structure; px: the parent node of x in the hierarchical structure. */

(1) Set the tags for all agents in A to 0 initially;
(2) b = 0;
(3) At = {a}; /*The allocated agent set for task t */
(4) Rt

a = Rt − Ra; /*The lacking resources of agent a to implement task t */
(5) If Rt

a == {} then b = 1; /*Agent a can provide all resources to implement task t */
(6) If (b == 0) then:

(6.1) b = Negotiation(a, a); /* a negotiates with the agents within Ta by calling Algorithm 2 */
(6.2) atemp= a;
(6.3) While ((b == 0) and (patemp<>Nil)) do:
(6.3.1) atemp= patemp;
(6.3.2) b = Negotiation (a,atemp); /* a negotiates with the agents within Tatemp by calling Algorithm 2 */

(7) If (b == 1) then Return(At ) /*All resources for implementing t are satisfied */
else Return (False);

(8) End.

Algorithm 2 Negotiation (a x). /* Agent a negotiates with the agents in subtree Tx */

(1) Create Queue (Q );
(2) Insert Queue (Q , x);
(3) Set the tag of x to 1;
(4) While(!EmptyQueue(Q ) and (b == 0)) do:
(4.1) aout = Out Queue(Q );
(4.2) R′

= Rt
a − Raout ;

(4.3) If R′
≠ Rt

a then:
(4.3.1)Rt

a = Rt
a − Raout ; /*Agent a obtains resources from aout to implement t */

(4.3.2) At = At∪{aout};
(4.4) If Rt

a == {} then b = 1; /*All resources for implementing t are satisfied */
(4.5) For ∀achild ∈ child(aout):
If the tag of achild is 0:

(4.5.1) Insert Queue(Q ,achild);
(4.5.2) Set the tag of achild to 1;

(5) Return (b);
(6) End.
Complexity analyses of Algorithm 3: Let the number of all agents be
|A| and the diameter of network be d, now we make analyses on
the complexity of Algorithm 3, shown as follows.

On the negotiation time: Algorithm 3 is implemented based
on the Breadth-First Traversal method in graph, the main parts of
Algorithm 3 are Sentence (9) and (9.5), thus the complexity is
O(|A| × |A|).

On the message overheads: the message overheads are the
messages exchanged between the principal agent and all other
negotiation agents, which are mainly about the information of
resources. The message overheads in the network are directly
proportional to the communication distance between principal
agent and other agents, thus whose complexity is O(d).

Theorem 1. If all resources for implementing task t can be satisfied
by using our algorithm, the total communication costs between the
principal agent and assistant agents in arbitrary structure can be
minimized.
Proof. Let ai be the principal agent, the set of lacking resources of
ai to implement t is Rt

ai . If Algorithm 3 is used, the set of assistant
agents is A∗ (A∗ = At − {ai}), and the total communication cost
between ai and A∗ is C∗. Now, if there is a set of agents A′

∗
, A′

∗
≠ A∗,

which can provide Rt
ai , and the total communication cost between

ai and A′
∗
is C ′

∗
; if C ′

∗
< C∗, it denotes that there are any agents with

higher gradations that provide the required resources in Rt
ai , but

the lower gradation agents with required resources do not provide
the required resources in Rt

ai . Obviously, such situation cannot take
place in Algorithm 3. Therefore, we have Theorem 1. �

Example 2. Fig. 3 is an example to demonstrate the RNT in
arbitrary multiagent network structure, where it shows the
negotiation process of a4 to implement task t . For the reason of
saving space, we do not express the negotiation process in detail.
2.2. Locality measures for tasks

For a task, after it is allocated to a set of agents, the set of agents
will occupy certain localities in the network. Thus the locality of
task can be measured by the localities of the allocated agents. In
this paper, we present three methods to measure the locality of
the set of agents for a task.

Definition 3. Occupancy percentage of allocated agents for task t ,
which denotes how much occupancy that the allocated agents of
t cover in the networked multiagent system.

Ωt = |At |/|A| (4)

where |At |denotes the number of allocated agents for t , |A|denotes
the number of all agents.

Definition 4. Mean geodesic distance between vertex pairs in the
allocated agents of task t .

lt =
2

|At |(|At | + 1)

−
(ai,aj∈At )∧(i≤j)

dij (5)

where dij is the geodesic distance from ai to aj, the distance from
each agent to itself is also included in this average (which is zero),
At denotes the allocated agents for t and |At | denotes the number
of At .

Definition 5. Geodesic center of the networked multiagents. For a
given multiagent network G = ⟨A, E⟩, the communication sum
cost for every agent ai ∈ A is:

Ci =

−
aj∈A

dij. (6)
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Algorithm 3. Resource negotiation of agent a in arbitrary structure:
/*a is the principal agent, A is the set of all agents */

(1) Set the tags for all agents in A to 0 initially;
(2) Create Queue(Q );
(3) Insert Queue (Q , a);
(4) Set the tag of a to 1;
(5) b = 0;
(6) At = {a}; /*The allocated agent set for task t */
(7) Rt

a = Rt − Ra; /*The lacking resources of agent a to implement task t */
(8) If Rt

a == {} then b = 1; /*Agent a can provide all required resources to implement task t */
(9)While ((!EmptyQueue (Q )) and (b == 0)) do:
(9.1) aout = OutQueue(Q );
(9.2) R′

= Rt
a − Raout ;

(9.3) If R′
≠ Rt

a then: /*Agent aout can satisfy some requests of a */
(9.3.1) Rt

a = Rt
a − Raout ; /* Agent a obtains resources from aout to implement t */

(9.3.2) At = At ∪ {aout};
(9.4) If Rt

a == {} then b = 1; /*All resources for implementing t are satisfied */
(9.5) For ∀alocal ∈ Laout : /* Laout is the set of neighbors of aout */
if the tag of alocal is 0, then: /*If agent alocal was not negotiated by a before */

(9.5.1). Insert Queue (Q , alocal);
(9.5.2). Set the tag of alocal to 1;

(10) If (b == 1) then Return (At ) /* All resources for implementing t are satisfied */
else Return (False);

(11) End.
(i) (ii)

(iv)

(iii)

Fig. 3. An example for constructing the resource negotiation topology (RNT ) in arbitrary structure: (i) An arbitrary network structure of multiagents and the negotiation
topology evolution; (ii) Resource negotiation topology; (iii) Number of resources owned by agents; (iv) Resource negotiation process.
Then the geodesic center of networked multiagents is defined
as:

ac = argmin
ai∈A

(Ci). (7)

Definition 6. Mean geodesic eccentricity of the allocated agents of
task t can be defined as:

ωt =

−
ai∈At

dic


/|At |. (8)
Example 3. In Fig. 4, At = {a4, a1, a2, a5, a7}, it is assumed that
the distance between any two neighboring agents is 1. According
to Definitions 3 and 4, Ωt = 5/8, lt = 1.13. From Fig. 4, we can see
that a7 is the center, thus themean geodesic eccentricityωt = 1.4.

3. Task allocation and load balancing based on talents

3.1. Talent

The talent of an agent is measured by the likelihood that the
agent can obtain the resources for implementing tasks.
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(i) (ii) (iii) (iv)

Fig. 4. An example for the locality measure of task: (i) The network structure of multiagents and the allocated agents of task t; (ii) The matrix of distances between vertex
pairs in the allocated agents of task t; (iii) The matrix of distances between vertex pairs of all agents; (iv) The matrix of distance between each allocated agent and the center
in the network.
Table 1
The talents of agents in Fig. 3 (λin = λex = 0.5).

Resources Talents Agents
a1 a2 a3 a4 a5 a6 a7 a8

r1
φi(1) 1/7 1/7 0 1/7 0 2/7 1/7 1/7
θi(1) 29/84 1/3 1/3 9/28 29/84 2/7 17/42 2/7
ωi(1) 41/162 5/21 1/6 13/56 29/168 2/7 23/84 3/14

r2
φi(2) 1/2 0 0 1/4 1/4 0 0 0
θi(2) 3/16 1/2 1/4 1/3 5/24 19/48 1/3 5/16
ωi(3) 11/32 1/4 1/8 7/24 11/48 19/96 1/6 5/32

r3
φi(3) 0 1/4 1/4 0 1/4 0 1/4 0
θi(2) 7/24 1/3 13/48 17/48 13/48 17/48 1/3 5/12
ωi(3) 7/48 7/24 25/96 17/96 25/96 17/96 7/24 5/24
Definition 7 (Inherent Talent of Agent). The talent of an agent is
defined by comparing its resources with other agents’ resources.
Let there be a resource rk, the number of rk in the whole system be
n(k), and the number of rk owned by ai be ni(k), then the inherent
talent on resource rk of agent ai is:

φi(k) = ni(k)/n(k). (9)

In the networked multiagent system, an agent can negotiate
and borrow resources from other agents according to Section 2.1.
Thus an agent’s talent can also be influenced by its contextual
resources [10]. Now we have the following definition.

Definition 8 (Extrinsic Talent of Agent). Let gi(j) denote the
negotiation gradation of agent aj in the RNTof ai, Zi denotes the set
of agents in the RNTof ai. The extrinsic talent of ai for rk is:

θi(k) =

−
j∈Zi

φj(k)/(gi(j) + 1). (10)

The denominator in (10) is gi(j) + 1, which can differentiate the
influences of the agent itself and its immediate neighbors.

Definition 9. Comprehensive talent of agent can be defined as:

ωi(k) = λinφi(k) + λexθi(k) (11)

where λin and λex are to determine the relative importance of
the two kinds of factors in the comprehensive talent of an agent,
λin + λex = 1.

Example 4. Nowwe can take the multiagent system in Fig. 3 as an
example to compute the talents of agents, the results are shown
in Table 1. From Table 1, we can see that φ1(2) > φ2(2), but
θ1(2) < θ2(2); it denotes that agent a2 can easily obtain r2 from
other agents than a1, though a2 has less r2s than s1.
3.2. Task allocation

3.2.1. Case for single resource
In some cases, a taskmay only need single kind of resources. For

example, in Fig. 3 andTable 1, let there be a task that needs resource
r1. If we implement task allocation based on the inherent talents of
agents, we should allocate the task to agent a6; if we implement
task allocation based on the extrinsic talents of agents, we should
allocate the task to agent a7; if we implement task allocation based
on the comprehensive talents of agents,we should allocate the task
to agent a6.

3.2.2. Case for multiple resources
When a task requires many resources, it may call each resource

sequentially. Nowwe candesign the criterion of FRFS (First required
resource-first satisfy), i.e., the agent that has the highest talent for
the first called resource should be allocated as the principal one of
that task. Let there be a task t , the set of resources called by task t
orderly is {n1r1, n2r2, . . . , nnrn}, ni denotes the required number of
resource ri. So we will allocate t to agent ai which has the highest
talent for r1, i.e., the highest φi(1), θi(1), or ωi(1). For example,
in Fig. 3 and Table 1, if the called resource sequence of a task
is {r2, r1, r2, r3}, and the task allocation is implemented based on
comprehensive talents of agents, a1will be assigned as the principal
one for such task.

3.2.3. Task allocation process
Now we have two methods for task allocation, one is semi-

supervised allocation, the other one is full-supervised allocation.
In the semi-supervised allocation, we should assign an agent to

act as the principal one which will initially negotiate with other
agents for the resources required by the task; then the set of
all agents that provide resources for the task is the allocated
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Algorithm 4. Semi-supervised allocation based on agent talents.

(1) Select the principal agent, a∗ , according to the resource satisfaction criteria in Section 3.2.1 or 3.2.2;
(2) Case ‘‘Network structure’’ of

‘‘Hierarchical structure’’: a∗ negotiates with other agents for required resources by calling Algorithm 1;
‘‘Arbitrary structure’’: a∗ negotiates with other agents for required resources by calling Algorithm 3;

End;
(3)Output At ;
(4) End.
agents. The algorithm of semi-supervised allocation is shown as
Algorithm 4.

In the full-supervised allocation, each resource is satisfied
according to the talents. Let ai be an agent, and the resources
owned by ai be Rai; now, task t comes to the system, and the set
of requested resources for implementing t is Rt , the set of lacking
resources to implement t is Rt . The algorithm of full-supervised
allocation is shown as Algorithm 5.

From the two algorithms, we can see that full-supervised
allocation algorithm looks for the agent with the highest talent
for each required resource, but the semi-supervised allocation
algorithm only looks for the principal agent with the highest talent
and the principal agent will seek for the other assistant agents.

Theorem 2. If the full-supervised allocation algorithm based on
agent talents is used, the number of agents allocated on any tasks can
be minimized.

Proof. Let task t come to the system; if the full-supervised
allocation based on agent talents is used, the set of allocated agents
is At . Now, if there is a set of agents A′

t , A
′
t ≠ At , which can provide

Rt ; if |A′
t | < |At |, it denotes that there are any agents with higher

talents for resource in Rt that are not allocated with such task,
but the agents with lower talents for resource in Rt are allocated
with such task; obviously, such situation cannot take place in the
full-supervised allocation based on agent talentwhere all allocated
agents are selected according to their talents. Therefore, we have
Theorem 2. �

Therefore, the number of allocated agents will be reduced
by the full-supervised allocation since it can select the highest
talent agents for each required resource, thus the resources can
be satisfied by agents as few as possible, accordingly the reduced
number can also reduce the communication costs; on the other
hand, the communication costs can be reduced by the semi-
supervised allocation from Lemma 1 and Theorem 1. Therefore,
these two algorithms can both reduce the communication costs than
other random allocation methods in practice.

3.3. Load balancing

3.3.1. The model
An agent may have more tasks to queue if it has higher talents.

Therefore, we should deal with the load balancing while there are
multiple tasks within the multiagent system.

Generally, the performance of load balancing is mainly
determinedby thewaiting timeof task. According to [18], the effect
of measures on load balancing is reflected by the number and size
of task teams on agents; and we simply consider that the waiting
time is only related to the length of task team. Let the allocated
agent set of task t be At , the set of resources required by t be Rt . We
candenote the teamof tasks that queue for resource rk of agent ai as
Qik, and the size of Qik is |Qik|. If task t calls its requested resources
concurrently, the waiting time of task t will be determined by
the maximum size of the queues for its required resources; if
task t calls its requested resources serially, the waiting time of
task t will be determined by the total sizes of the queues for its
required resources. Therefore, we can define the waiting time of a
task as:

wt = max
∀ri∈Rt ,∀ak∈At

(|Qik|), or wt =

−
∀ri∈Rt ,∀ak∈At

(|Qik|). (12)

Now, if there are multiple tasks come to a multiagent system,
the set of those multiple tasks is T , we can define the global load
balancing performance of the system is:

w =
1
|T |

−
t∈T

wt . (13)

Therefore, our goal of load balancing is to reduce the average
size of the queues for all resources and all agents. In previous
research work on load balancing [18,13], an agent’s probability to
be allocated new tasks will be reduced if it has already undertaken
too many tasks; thus the number of undertaken tasks of an agent
will only influence the probability of itself to be allocated new tasks
in the future.

In the networked multiagent systems, the agents may coop-
erate to implement tasks according to the network structure [9].
Therefore, the number of undertaken tasks of an agent will also
influence the probability of its cooperated agents to be allocated
new tasks in some degrees.

Definition 10. The infection sub-structure of an agent in the network
is defined as the set of interaction relations linking this agent
with other agents in the network. Let the network structure of
multiagents be G = ⟨A, E⟩, where A = {a1, a2, . . . , an} denotes the
set of agents and E denotes the set of agent networking relations.
Then the 1st-order infection sub-structure of an agent, ai ∈ A, is
the union of its immediate networking links:

Infai = {(aj, ai)|aj ∈ A ∧ (aj, ai) ∈ E}. (14)

Obviously, the 2nd-order infection sub-structure of ai can be
defined as:
Inf(Infai) = {(ak, aj)|aj ∈ A ∧ ak ∈ A ∧ (aj, ai)

∈ E ∧ (ak, aj) ∈ E}. (15)
Therefore, thenth-order infection sub-structure of ai canbedefined
as:∏

n

Infai =

n  
Inf (Inf (. . . (Infai) . . .))

= {(an, an−1)|a1 ∈ A ∧ a2 ∈ A ∧ . . . ∧ an ∈ A ∧ (an, an−1)

∈ E ∧ . . . ∧ (a2, a1) ∈ E ∧ (a1, ai) ∈ E}. (16)
The set of agents within the 1st-order infection sub-structure of
agent ai (called its 1st-order infection agents) is:
�ai = {aj|aj ∈ A ∧ (aj, ai) ∈ Infai}. (17)
Let aj ⊙ r denote that the networking relation r is associated with
agent aj, the set of all agents within the all-orders infection sub-
structures of agent ai is:−

�ai =


k


aj|aj ⊙ r ∧ r ∈

∏
k

Infai


. (18)

Example 5. Fig. 5 is an example for the infection sub-structures.
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Algorithm 5. Full-supervised allocation based on agent talents.
/* A is the set of all agents, At is the set of agents to implement task t */

(1) Rt = Rt ;
(2) At = {};
(3) While Rt ≠{} do:

(4.1) For Rt : Select the principal agent, a∗ , according to the resource satisfaction criteria in Section 3.2.1 or 3.2.2;
(4.2) At = At∪{a∗};
(4.3) Rt = Rt − Ra∗ ;

(5) If (Rt == {}) then Return(At ) /* All resources for implementing t are satisfied */
else Return (False); ;

(6) End.
(i) (ii)

Fig. 5. An example of the infection sub-structure: (i) a multiagent network structure; (ii) the infection sub-structure of agent a.
Since an agent will cooperate with other agents in the network
structure for resources; thus if an agent has already been allocated
with too many tasks, the probabilities of its infected agents to
accept new tasks should also be reduced. Thus we will develop the
load balancing method also based on the infection sub-structure.
If an agent, a, is allocated with some tasks, it is not only a itself but
also the agents in the infection sub-structure of a will be reduced
the possibilities to accept new tasks in the future. Let |Qik| be
the size of team where tasks queue for resource rk of agent ai,
the extrinsic talents of all agents in the all-orders infection sub-
structures of ai should be changed as:

θi(k) = θi(k) − σ1(Qik)

∀aj ∈

−
�ai , θj(k) = θj(k) − σ2(Qik/dij)

(19)

where σ1, σ2 are two monotonously increasing functions, dij
denotes the order of aj in the infection sub-structure of ai.

For the inherent talent, only the one of ai itself should be
changed, shown as:
φi(k) = φi(k) − σ3(Qik) (20)
where σ3 is a monotonously increasing function.

3.3.2. A case study
Now we make a case study on the load balancing based

on inherent talent, i.e. the load balancing is implemented by
Eq. (20); for the reason of demonstrating the case clearly, we can
let σ3(Qik) = Qik, φi(r) = ni(k), and the all tasks share the same
execution time. Now let there be n tasks, the execution time of each
task is η, the resource required for each task is 1r (i.e., the number
of resource r is 1); if task t is allocated to agent ai, thus the real
finish time of t is Qirη. Now there arem agents, a1, a2, . . . , am; The
inherent talents of agents descending from a1 to am monotonously,
i.e, a1 has the maximum inherent talent, am has the minimum
inherent talent; the difference of inherent talents between ai and
ai+1 is γi,i+1. We make task allocation on the inherent talents of
agents.

(1) If we make task allocation without considering load
balancing, the n tasks will be all allocated to a1, thus the finish time
of task ti is iη. Thus the global performance of system is

w =

−
ti∈T

iη


|T | (21)

where T is the set of all tasks, and |T | is the number of all tasks.
(2) Now we make task allocation considering load balancing,

thus we have the following allocation results:
(2.1) From the 1st to the (1 + γ1,2)th task: all γ1,2 tasks are

allocated to a1;
(2.2) From the (1+γ1,2 +1)th task to the (1+γ1,2 +1+γ2,3)th

task: the number of tasks is γ2,3, among which γ2,3/2 tasks is
allocated to a1, γ2,3/2 tasks is allocated to a2.

(2.3) From the (1+γ1,2 +1+γ2,3 +1)th task to the (1+γ1,2 +

1+γ2,3+1+γ3,4)th task: the number of tasks is γ3,4, amongwhich
γ3,4/3 tasks is allocated to a1, γ3,4/3 tasks is allocated to a2, γ3,4/3
tasks is allocated to a3.

(2.4) For i = 1 to |T |, from the (
∑

x=1,...,i γx,x+1 + i+ 1)th to the
(
∑

x=1,...s,i+1 γx,x+1 + i + 1)th task: the number of tasks is γi+1,i+2,
then those γi+1,i+2 tasks should be divided evenly into i + 1 parts
and each part of tasks are allocated to aj (1 ≤ j ≤ i + 1).

(2.5) Finally, the number of tasks allocated to agent ai is: |Ti| =∑
x=i,...,|T |

γx,x+1/x.
(2.6) For each agent ai, the average waiting time of the tasks

allocated on ai is: wi = (
∑

y=1,...,|Ti|
yη)/|Ti|.

(2.7) Therefore, the global performance of the system is:

w =

 −
i=1,...,m

wi


m =

 −
i=1,...,m

 −
y=1,...,|Ti|

yη

|Ti|

m

=


−

i=1,...,m




−
y=1,...,

 ∑
x=i,...,|T |

γx,x+1/x

 yη


 −
x=i,...,|T |

γx,x+1


x
i


m. (22)
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(i) (ii) (iii)

(iv)

Fig. 6. An example of RON: (i) the network structure of multiagents; (ii) the lengths of shortest paths among agents in Rt ; (iii) the final RONof t; (iv) the two kinds of
centralities.
From Eqs. (21) and (22), we can see that the load balancing can
obtain more advantage when the number of tasks increases. For
saving space, we do not give the numerical simulation for the two
equations.

4. Task allocation and load balancing based on centralities

4.1. Centrality

4.1.1. Centrality in the network structure of agents
Centrality is one of the most important and widely used

conceptual tools for analyzing network structures [3]. We can use
the closeness to measure the centrality of agent.

Definition 11 (Centrality of Agent). An agent is considered impor-
tant if it is relatively close to all other agents. Closeness is based on
the inverse of the distance of each agent to every other agent in the
network:

Cc(ai) =


|A|−
j=1

d(ai, aj)

−1

. (23)

Therefore, the probability of an agent that is allocated with task
can be defined as the monotonously increasing function of such
agent’s centrality, shown as follows:

µ(ai) = σ4(Cc(ai)) (24)

where σ4 is a monotonously increasing function.

4.1.2. Centrality in the resource overlay sub-network of task

Definition 12 (Resource Overlay Sub-network of Task (RON)). Let
there be a multiagent network structure G = ⟨A, E⟩; for ∀a ∈ A,
the set of resources owned by a is Ra; now a task t comes to the
network, and the set of resources required by t is Rt . The resource
overlay sub-network of the resources of task t , GRt , is composed
of the agents that have any resources in Rt and the shortest paths
among those agents. GRt = ⟨ARt , ERt⟩, ARt = {ai|(ai ∈ A) ∧ (Rai ∩

Rt ≠ ∅)}, ERt = {Pij|ai, aj ∈ ARt}, where Pij denotes the shortest
path between ai and aj in G.

Fig. 6(i) shows a multiagent network. Now let a task t come to
the system, and the resources required by t is Rt , the set of agents
that can provide any resources in Rt is ARt = {a1, a3, a5, a7}. We
first compute the shortest path between every two agents in ARt ;
they are P13 = {⟨1, 3⟩}, P15 = {⟨1, 2⟩, ⟨2, 5⟩}, P17 = {⟨1, 4⟩,
⟨4, 7⟩}, P35 = {⟨3, 1⟩, ⟨1, 2⟩, ⟨2, 5⟩}, P37 = {⟨3, 4⟩, ⟨4, 7⟩}, P57 =

{⟨5, 7⟩}. Finally, the RON of task t is shown as the overstriking part
in Fig. 6(iii).
Therefore, we can also compute the centrality of the agents in
ART in RON of t , Gt ; the centrality in Gt is called the centrality in
RON.

4.2. Task allocation

Nowwe also develop two methods for task allocation based on
agent centralities, one is semi-supervised allocation, the other one
is full-supervised allocation.

In the semi-supervised allocation based on agent centralities,
we should assign an agent to act as the principal one which will
initially negotiate with other agents for the resources required by
task; then the set of all agents that provide resources for the task is
the allocated agents. On the principal agent, we can select the one
with the maximum centrality in G or Gt :

a∗ = argmax
a∈ARt

(Ca), or a∗ = argmax
a∈ARt

(C t
a). (25)

The algorithm of semi-supervised allocation based on centrali-
ties is shown as Algorithm 6.

In the full-supervised allocation, each resource is satisfied
according to the centralities. Let ai be an agent, and the resources
owned by ai be Rai; now, task t comes to the system, and the set
of requested resources for implementing t is Rt , the set of lacking
resources to implement t is Rt .

Theorem 3. If the full-supervised allocation method based on agent
centralities is used, the average centrality of agents allocated on any
tasks can be maximized.

Proof. Let task t come to the system; if the full-supervised
allocation based on agent centralities is used, the set of allocated
agents is At . Now, if there is a set of agents A′

t , A
′
t ≠ At , which can

provide Rt ; if the average centrality in A′
t is higher than the one

of At , it denotes that there are any agents with higher centralities
that are not allocated with such task, but the agents with lower
centralities are allocated with such task; obviously, such situation
cannot take place in the full-supervised allocation based on agent
centralities where all allocated agents are selected according to
their centralities. Therefore, we have Theorem 3. �

Therefore, the centralities of allocated agents will be enhanced
by the full-supervised allocation since it can select the highest
centrality agents each time, thus it is highly probable that the
communication costs can be reduced; on the other hand, the
communication costs can be reduced by the semi-supervised
allocation from Lemma 1 and Theorem 1. Therefore, these two
algorithms can both reduce the communication costs more probably
than other random allocation methods in practice.
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Algorithm 6. Semi-supervised allocation based on agent centralities.

(1) Construct the resource overlay sub-network (RON) of task t , GRt , according to Section 4.1.2;
(2) For ∀a ∈ ARt : compute the two kinds of centralities of a, Ca and C t

a ;
(3) Select the principal agent, a∗ , from ARt , according to Eq. (25);
(4) Case ‘‘Network structure’’ of

‘‘Hierarchical structure’’: a∗ negotiates with other agents for required resources by calling Algorithm 1;
‘‘Arbitrary structure’’: a∗negotiates with other agents for required resources by calling Algorithm 3;

End;
(5) Output At ;
(6) End.

Algorithm 7. Full-supervised allocation based on agent centralities.
/* A is the set of all agents, At is the set of agents to implement task t */

(1) Rt = Rt ;
(2) At = {};
(3) While Rt ≠ {} do:

(4.1) Construct the resource overlay sub-network (RON) of Rt , GRt , according to Section 4.1.2;
(4.2) Select the principal agent, a∗ , from ARt , according to Eq. (25);
(4.2) At = At ∪ {a∗};
(4.3) Rt = Rt − Ra∗ ;

(5) If (Rt == {}) then Return(At ) /* All resources for implementing t are satisfied */
else Return (False);

(6) End.
4.3. Load balancing

4.3.1. Semi-supervised allocation
While we use the semi-supervised allocation based on agent

centralities, we can develop the load balancing method also based
on the infection sub-structure which is similar to the one of
Section 3.3. If an agent, a, is allocatedwith some tasks, it is not only
a itself but also the agents in the infection sub-structure of a will
be reduced the possibilities to accept new tasks in the future. Let
|Qik| be the size of team where tasks queue for the resource rk of
agent ai, the agents in the all-orders infection sub-structures of ai
should be changed as:

µi(k) = µi(k) − σ5(Qik)

∀aj ∈

−
�ai , µj(k) = µj(k) − σ6(Qik/dij)

(26)

where σ5, σ6 are two monotonously increasing functions, dij
denotes the order of aj in the infection sub-structure of ai.

4.3.2. Full-supervised allocation
Let the full-supervised allocation be used; if an agent, a, is

allocated with some tasks, it is only a itself that will be reduced
the probability to accept new tasks in the future. Let |Qik| be the
size of team where tasks queue for the resource rk of agent ai, the
probability of ai should be changed as:
µi(k) = µi(k) − σ5(Qik). (27)

5. Comparative experiments and analyses

To validate our presented model, we make a series of simula-
tion experiments. The simulation platform can effectively simu-
late the networked multiagent system with dynamic topology; in
the simulated system, each agent can sense the dynamic change
of its neighboring network structure, thus the negotiation of agent
with its context can accord with the real time situation of the net-
work. In the experiments, the task is to collect some types of data
from agents, and send the collected data to the monitor; finally,
the monitor makes processing on the collected data. In our experi-
ments, there are many kinds of data which are randomly stored in
the network, and the collection of each kind of data needs one kind
of resource; each agent has different data and resources.
5.1. Comparison between talent-based task allocation and centrality-
based task allocation

Here the difference of task execution time between different
models is mainly determined by the communication time, thus
in this section the execution time is simply described by
communication time, i.e. the execution time is 0 if there is only
one agent to execute the task.

5.1.1. Semi-supervised allocation without load balancing
Now we make a series of experiments on the semi-supervised

task allocation without considering load balancing; the experi-
ments are divided into two categories, one is in the hierarchical
network, and the other is in the arbitrary network. The experimen-
tal results are shown in Figs. 7 and 8, where the centrality-based
allocation method includes the one in G and the one in RON which
are described in Section 4.1.

(1) Both in Figs. 7 and 8, we can see that the mean geodesic
eccentricities of talent-based method is higher than the ones of
centrality-based method in G and RON; but there are no obvious
difference on occupancy percentages andmean geodesic distances.
Therefore, it can conclude that the main difference of the two
methods (talent-based one and the centrality-based one) is their
taking different mean geodesic eccentricities.

(2) From Fig. 7(iii) and Fig. 8(iii), we can see that the difference
of mean geodesic eccentricities between the two methods will
decrease with the increasing of task required resources. The
potential reason is that the number of allocated agents will
increase with the increasing resources, thus the increasing agent
number may mitigate the difference of geodesic eccentricities
between the two methods.

(3) From Fig. 7(iv) and Fig. 8(iv), we can see that the
task execution times in talent-based method are always higher
than the ones in centrality-based method, especially when the
required resources of tasks increase; thus it concludes that the
task execution performance of centrality-based method always
outperforms the talent-based one, especially while the required
resources of tasks are large.

(4) From Fig. 7(iv), we can see that the method based on
centrality in RON takes the same effect as the one based on
centrality in G; but in Fig. 8(iv), we can see that the method based
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(i) (ii) (iii) (iv)

Fig. 7. Semi-supervised allocation without load balancing in hierarchical multiagent network. (i) Occupancy percentage of allocated agents; (ii) Mean geodesic distance
between vertex pairs in the allocated agents; (iii) Mean geodesic eccentricity of allocated agents; (iv) Execution time of task.
(i) (ii) (iii) (iv)

Fig. 8. Semi-supervised allocationwithout load balancing in arbitrarymultiagent network. (i) Occupancypercentage of allocated agents; (ii)Mean geodesic distance between
vertex pairs in the allocated agents; (iii) Mean geodesic eccentricity of allocated agents; (iv) Execution time of task.
on centrality in RON outperforms the one based on centrality in G.
The potential reason is: in the arbitrary network structure, the RON
can make the allocated agents be denser and more central, shown
as Fig. 8(i)–(iii); but in the hierarchical structure, the negotiation
is constrained much by the structure, thus the one based on
RON cannot take obvious effects by comparing to the one based
on G.

5.1.2. Full-supervised allocation without load balancing
Now we make a series of experiments on the full-supervised

task allocation without considering load balancing; the experi-
ments are divided into two categories, one is in the hierarchical
network, and the other is in the arbitrary network. The experimen-
tal results are shown in Figs. 9 and 10.

(1) From Fig. 9(ii)–(iii) and Fig. 10(ii)–(iii), the two allocation
methods have differentmean geodesic distance between vertex pairs
in At (GD) and mean geodesic eccentricity of At (GC), which is
different from the result in 5.1.1. Therefore, it concludes that the
full-supervised algorithm can get not only different GDs but also
different GCs for the two methods.

(2) From Fig. 9(iii) and Fig. 10(iii), we can see that the difference
of mean geodesic eccentricities between the two methods will
decrease with the increasing of task required resources. The
potential reason is that the number of allocated agents will
increase with the increasing resources, thus the increasing agent
number may mitigate the difference of geodesic eccentricities
between the two methods.

(3) From Fig. 9(iv) and Fig. 10(iv), we can see that the task
execution times in talent-basedmethod are always higher than the
ones in centrality-based method.

Conclusion. From Sections 5.1.1 and 5.1.2, we can see that the task
allocation based on centrality always outperforms the one based on
talent, especially while the tasks are large and the semi-supervised
algorithm is used; the reason is that the centrality-based method can
result in lowermean geodesic eccentricity of the allocated agents, thus
the communication cost will be reduced accordingly. Moreover, the
centrality in RON is always equivalent to or outperforms the one in G,
since the former kind of centrality also considers the talents of agents.

5.2. Comparison between talent-based load balancing and centrality-
based load balancing

5.2.1. Semi-supervised allocation with load balancing
Now we make a series of experiments on the semi-supervised

allocation by considering/not considering load balancing, the
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Fig. 9. Full-supervised allocation without load balancing in hierarchical multiagent network. (i). Occupancy percentage of allocated agents; (ii). Mean geodesic distance
between vertex pairs in the allocated agents; (iii). Mean geodesic eccentricity of allocated agents; (iv) Execution time of task.
(i) (ii) (iii) (iv)

Fig. 10. Full-supervised allocation without load balancing in arbitrary multiagent network. (i). Occupancy percentage of allocated agents; (ii). Mean geodesic distance
between vertex pairs in the allocated agents; (iii). Mean geodesic eccentricity of allocated agents; (iv). Execution time of task.
comparative results of total execution time are shown as Fig. 11.
In Fig. 11, the x-axis denotes a series of task teams where each
task team includes certain tasks, which increaseswith the required
resources from T1 to T5; the y-axis denotes the total execution time
of a team of tasks. From Fig. 11, we can see that our load balancing
mechanism can always take obvious effects which can reduce the
total execution times by contrasting to the ones without load
balancing; moreover, the effect of load balancing in hierarchical
network is better than the one in arbitrary network while the task
team is not large.

5.2.2. Full-supervised allocation with load balancing
Now we make a series of experiments on the full-supervised

allocation by considering/not considering load balancing, the
comparative results of total execution time are shown as Fig. 12.
In Fig. 12, the x-axis denotes a series of task teams where each
task team includes certain tasks, which increaseswith the required
resources from T1 to T5; the y-axis denotes the total execution
time of a team of tasks. From Fig. 12, we can see that our load
balancing mechanism can always take obvious effects which can
reduce the total execution times by contrasting to the oneswithout
load balancing.
Conclusion. FromSections5.2.1 and5.2.2, we conclude: (1)whatever
task allocation methods are adopted, the load balancing mechanism
can take obvious effects to reduce the total task execution time by com-
paring to the one without load balancing; (2) while load balancing is
considered, the talent-based allocation method can generally outper-
form the centrality-based one, since talent-based method can effec-
tively mitigate the congestion of tasks.

6. Related work

Our research is related to the task allocation and load balancing
of multiagent systems. Generally, the related work can be
categorized as follows.

(1) Task allocation of multiagent systems. When a task comes
to a multiagent system, the first step is to allocate such task to
certain agents, which is called task allocation [25,11]. Generally,
the task allocation in previous work can be categorized into
two kinds: (1) One is self-owned resource based method, which is
always implemented based on the agents’ self-owned resources
distribution; the number of allocated tasks on an agent is always
directly proportional to its self-owned resources [22,18]. (2) The
other is contextual resource based method, where the number of
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Fig. 11. Semi-supervised allocation with load balancing in multiagent network. (i) Hierarchical multiagent network; (ii) Arbitrary multiagent network.
(i) (ii)

Fig. 12. Full-supervised allocation with load balancing in multiagent network. (i) Hierarchical multiagent network; (ii) Arbitrary multiagent network.
allocated tasks on an agent is directly proportional to not only
its self-owned resources but also the resources of its contextual
agents, since agents always need to cooperate with other ones
within their contexts when they execute tasks [10].

(2) Workload-based Load balancing of multiagent systems. An
agent may be assigned more tasks, if it possesses more self-owned
or contextual resources. However, if too many tasks are crowded
on certain agents which have higher resource accessibilities, the
agents will have heavy workloads such that the tasks may be
delayed and do not get quick responses; therefore, we should
let some tasks be switched to other agents with relatively fewer
resources but lower workloads, which is called workload-based
load balancing. For example, Liu et al. present a macroscopic
characterization of agent-based load balancing, and the number
and size of teams where agents queue are considered [18].
Schaerf et al. study the adaptive load balancing where the
information of global resource distribution should be known to
make global optimal resource selections [23]. The workload-based
load balancing methods are sufficient to cope with the agents
executing unrelated tasks where the communication between
agents is few.

(3) Communication-based load balancing of multiagent systems.
In multiagent systems, the agents always need to exchange
messages with each other, thus the communication among agents
should take obvious effects in the load balancing [5]. In the
related benchmark work in [4], Chow and Kwok investigate the
load balancing for distributed multiagent computing, where a
novel communication-based load balancing algorithm is proposed
by associating a credit value with each agent; the credit of an
agent depends on its complete situation, such as its affinity to a
machine, its current workload, its communication behavior, etc.
The rationale of this credit attribute is to capture the affinity of
an agent to the machine in that the intra-machine communication
component contributes positively to the creditwhereas the reverse
is true for the inter-machine communication. The agents with low
credits will be selected to migrate to other machines so that the
inter-machine communication becomes local communication in
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the receiver machine, thereby the total communication overhead
can be reduced significantly.

From above, we can see that our locality-based method is
some similar to the work in [4], both of which consider the
effects of communication among agents. However, there are some
differences between them: (1) The algorithm in [4] is to migrate
agents among compute hosts so as to implement the load balancing
of compute hosts, our method is to assign tasks among agents so as
to implement the load balancing of agents; (2) The communication
in [4] is related to the underlying topologies of compute hosts
and the affinities of agents to the hosts, but the communication
in our model is only related to the topologies of organization
network structures among agents; (3) The communication among
agents in [4] includes inter-machine communication and intra-
machine communication, so the target of load balancing in [4]
is to reduce the inter-machine communication, in our model the
communication only considers the inter-agent communication
(which overlooks the underlying physical networks); (4) There
is not a network structure to organize the agents in [4], but in
our model all agents are network structure organized so that
the interaction locality of agent is very important. Generally, in
multiagent systems, the agents are organized in some structures
and run on certain underlying computer machines; therefore, we
can see that the method in [4] can be used in any multiagent systems
running on the underlying networked machines (i.e., the multiagents
themselves may not be organized in network structures), but our
model is mainly used in the networked multiagent systems (i.e., the
multiagents themselves should be organized in network structures).
The contributions of this paper. The purpose of this paper is to
investigate the task allocation in networked multiagent system,
termed locality-sensitive task allocation and load balancing. This
paper mainly investigates the comparison between the talent
and centrality-based task allocations, and tries to find the effects
of such two approaches in different situations. The experiment
results show that the centrality-based method can reduce the
communication costs for single task more effectively than the
talent-based one, but the talent-basedmethod can generally obtain
better load balancing performance for parallel tasks than the
centrality-based one.

7. Conclusion

In this paper, the task allocation and load balancing in
networkedmultiagent systems are addressed; and a novel locality-
sensitive approach is investigated. This paper mainly presents
two different models and makes comparison between them:
one is the talent-based task allocation and load balancing,
which is implemented according to the agents’ talents, such as
resources; the other one is the centrality-based task allocation and
load balancing, which is implemented according to the agents’
centralities in network. The experiment results show that the
centrality-based method can reduce the communication costs of
single task more effectively than the talent-based one; while the
talent-based method can generally obtain better load balancing
performance of parallel tasks than the centrality-based one.
Therefore, the centrality-based allocation method can be applied
while the implementation of tasks is serial, and the talent-based
allocation method can be applied while the implementation of
tasks is parallel.

In our model, the agents’ talents are assumed to only differ
essentially in their resources; however, in some circumstances
the above assumption does not match the peculiarities of real
multiagent systems where some agents may have different other
talents besides resources [10], such as computable functions,
sensing abilities. Obviously, by only extending the definition of
talent, our talent-based model can easily be extended into other
real situations where agents have different other factors.

Moreover, in this paper, the centrality is measured based on
closeness. However, there are various kinds of definitions for
centrality. Therefore, in the future, we will investigate the effects
of different centrality measures on the locality-sensitive task
allocation.
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