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Abstract—Android accessibility service was designed to assist
individuals with disabilities in using Android devices. However,
it has been exploited by attackers to steal user passwords
due to design shortcomings. Google has implemented various
countermeasures to make it difficult for these types of attacks
to be successful on modern Android devices. In this paper, we
present a new type of side channel attack called content queries
(CONQUER) that can bypass these defenses. We discovered that
Android does not prevent the content of passwords from being
queried by the accessibility service, allowing malware with this
service enabled to enumerate the combinations of content to brute
force the password. While this attack seems simple to execute,
there are several challenges that must be addressed in order to
successfully launch it against real-world apps. These include the
use of lazy query to differentiate targeted password strings, active
query to determine the right timing for the attack, and timing-
and state-based side channels to infer case-sensitive passwords.
Our evaluation results demonstrate that the CONQUER attack is
effective at stealing passwords, with an average one-time success
rate of 64.91%. This attack also poses a threat to all Android
versions from 4.1 to 12, and can be used against tens of thousands
of apps. In addition, we analyzed the root cause of the CONQUER
attack and discussed several countermeasures to mitigate the
potential security risks it poses.

I. INTRODUCTION

Even with the adoption of biometric authentication meth-
ods such as fingerprint scanning and facial recognition, as well
as additional hardware authentication methods like USB keys
and IC cards, passwords remain an important means of authen-
ticating a user in mobile security. As the first line of defense
against unauthorized access, passwords protect valuable user
data, making them an attractive target for attackers. While
traditional attacks like brute-force attempts are not impossible,
they often come with significant drawbacks, like a high time
cost. As a result, attackers are seeking more practical methods
to obtain user passwords, such as distributing malware (e.g.,
keyloggers) onto mobile devices, or guessing passwords based
on personal information [34].
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On Android devices, malware often uses the accessibility
service to steal user passwords. The accessibility service was
originally designed to assist users with disabilities in using
Android apps, but it can be easily exploited by malware
to collect sensitive information such as passwords. This is
because the accessibility service has the ability to interact
with victim apps and obtain information such as the content of
foreground windows and app life cycles without involving the
user. Attackers can use the accessibility service to passively
collect user credentials through accessibility events or actively
hijack input or output channels to intercept user credentials.
Previous research has demonstrated the potential of abusing
the accessibility service for malicious purposes, including the
collection of user credentials (e.g., [11], [18], [8]) and the
interception of user input (e.g., [21], [17], [11], [18]).

Google is aware of the risks posed by accessibility-
service-based attacks and has implemented various defenses
to mitigate them. One defense strategy is to remove passwords
from accessibility events (e.g., [18]). Other defenses aim to
increase user awareness by sending warning messages or
requiring user confirmation before allowing the accessibility
service to access certain information (e.g., [35]). These
measures make it difficult to exploit the accessibility service
to steal passwords on newer versions of Android.

However, in this paper, we show that existing defenses
against password stealing attacks can be bypassed and
passwords can still be stolen by exploiting a new query-based
side channel — using findAccessibilityNodeInfos-
ByText(text) to query the content of the foregrounds.
Particularly, this allows users to locate user interface (UI)
elements containing specific text by returning a list of such
elements. For example, consider an Android app that has a
login button with the text “Login”. Using this API, an assistive
app can quickly identify the login button and automatically
click it for the user. While it is intended to help users navigate
and use apps more easily, we have found that it can also
be exploited to steal passwords: password fields are also UI
elements that can be located by searching for a string that
exists within the password. Surprisingly, Android neither
prevents searches of password fields (it returns the password
input box as usual if the searched string hits the real password)
nor alerts users to this potential security risk. To make matters
worse, even if only bullet points are displayed in the password
field (which is a type of defense enabled by Android), this
API can still searches the given text in the real password.
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Based on this observation, we introduce the Content
Queries (CONQUER) attack, a new query-based side channel
method for stealing passwords. CONQUER exploits the side
channel by repeatedly querying the latest password character
entered using the API as the users types their passwords, by
setting the parameter to all possible characters. If the API
returns results indicating that the queried string is in the
password field, we can determine what the user has just entered
and update our collected password accordingly (essentially,
we are performing a brute-force attack to query each newly
entered password character).

While CONQUER may seem straightforward to launch,
there are three challenges that must be addressed in order to
make it practical. First, query results can be ambiguous due to
the existence of content descriptions (which are configured by
the developers) and do not necessarily indicate the presence
of specific strings or characters in a password. Second, some
apps have implemented defenses to mitigate previous attacks
(e.g., [18], [8]). As a side effect, these defenses may hinder an
attacker’s ability to determine when to perform queries. For
instance, these defenses may block outgoing password-related
accessibility events (through which the malware can determine
when to launch the queries), and malware can no longer receive
them. Third, the API being exploited does not require the
specified text to be case-sensitive. As such, the malware can
only collect a case-insensitive password by default.

Fortunately, we have addressed these challenges and suc-
cessfully implemented CONQUER. To address the first chal-
lenge, we propose a lazy query algorithm: we can combine
and query the characters not in the content description but
in the password (i.e., lazy queries) to eliminate side effects
caused by the text in the content description. To deal with the
second challenge, we actively query the password length, and
whenever it changes, we know that the user has entered a new
character. For the third challenge, we use the time and typing
speed as side channels (i.e., pressing the case-switch button
will cause more time to enter a character) and set up a state
machine that tracks the input state of the user (e.g., pressing
the case-switch button) to recover case-sensitive passwords.

We evaluated the effectiveness of CONQUER by conducting
extensive experiments. The experimental results on 108 real-
world passwords show that CONQUER can recover the original
passwords based on the collected case-insensitive passwords
and input timing information with an average one-time suc-
cess rate of 64.91%. We show that CONQUER works against
all popular Android versions (ranging from Android 4.1 to
Android 12), and all apps that use system-provided password
input boxes are therefore vulnerable to our attack. Through our
large-scale analysis on 13,786 Android apps that use custom
password input boxes, we also identified 13,001 (94.30%)
apps that are subject to our attack. We responsibly disclosed
our findings to Google, who acknowledged our findings but
decided not to fix the issue at this time because the accessibility
service requires this behavior to function as intended. We
therefore believe that there is no easy fix for CONQUER.

Our major contributions are summarized as follows.

• New Findings. We are the first to propose CONQUER,
a novel password-stealing attack that exploits the
content query side channel in the Android accessibility

service. Though Android currently has multiple coun-
termeasures in place to defend against accessibility-
service-based attacks, CONQUER can go around them
and steal user passwords.

• New Techniques. To ensure the practicality of CON-
QUER, we have introduced several new techniques:
the lazy query technique eliminates the side effects
caused by content descriptions, the length-based side
channel allows us to determine if the user is entering
the password, and the temporal side channel and state
machine enable us to handle case-sensitive passwords.

• Extensive Experiments. We evaluate the performance
and security implications of CONQUER through real-
world experiments. Our results show that CONQUER
can recover case-sensitive passwords with an average
one-time success rate of 64.91%. In addition, CON-
QUER affects system-provided password input boxes
on all popular Android versions, and our large-scale
analysis of Android apps revealed that 13,001 out of
13,786 (94.3%) apps using customized password input
boxes are also vulnerable to our attack.

II. BACKGROUND

In this section, we first introduce the Android accessibil-
ity service in §II-A. Next, we discuss existing accessibility-
service-based attacks as well as the defenses in §II-B.

A. Android Accessibility Service

The Android accessibility service provides user interface
enhancements in assisting users with disabilities (e.g., visual or
hearing impairment) [12]. The accessibility service allows apps
to be notified of accessibility events triggered by UI actions,
such as clicking buttons or scrolling the screen. For example,
TalkBack [14] can provide real-time spoken feedback to
users while they are interacting with their devices. In order to
use the accessibility service, app developers must configure
the service to tell the system when and how accessibility
service should be invoked, and which event types (e.g.,
clicking a button or scrolling the screen) the service should
respond to. To achieve this, developers need to extend the
AccessibilityService class and override the callback
method onAccessibilityEvent(event) to handle
received accessibility events and take corresponding actions
(i.e., specifying how the app deals with accessibility events).

Being an important service that is open to all developers,
the Android accessibility service has offered various APIs.
One such API is findAccessibilityNodeInfos-
ByText(text). The API takes a specific text as input
and returns a list of AccessibilityNodeInfo objects,
each representing a foreground UI component containing
the specified text. Therefore, this API is typically used to
automatically locate UI components that have specific names
or contain specific texts. For example, an assistive Android app
might use this API to facilitate automatic login. To this end, the
app can first get the root node of the currently active window
in its target via getRootInActiveWindow() (Android
organizes UI components in a tree structure, with each active
window having a root node [13]). The app can then invoke
findAccessibilityNodeInfosByText("login")
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IME Hijack Kalysch et al. [18] ✗ ✓ ✗ ✓ ✓ ✗
TTS Hijack Jang et al. [17] ✗ ✓ ✗ ✓ ✓ ✗

TABLE I: Comparison of existing accessibility-services-based
password stealing attacks. Ally is short for the accessibility
services.

on the root node to acquire all UI components within the
window containing the string “login” (e.g., the text of the
login button is usually “login”). By enumerating and testing
each of the returned UI components, the app can finally
locate the login button and automatically click it through the
performAction(action) API.

B. Accessibility Service Abuse and Defense

The accessibility service has been exploited to design
malware [21], [11], [18], [10], [1], [39] and to power various
practically feasible attacks, such as automatic permission
granting, silent app installation, and password stealing. For
example, the use of the accessibility service for password
stealing has been widely discussed [21], [17], [11], [18], [8],
and has significant impacts. We group existing accessibility-
service-related password stealing attacks into two categories
based on how passwords get leaked. As illustrated in Table I,
we summarize the attacks as follows:

• Passive Attacks. In this type of attacks, attackers
passively sniff accessibility events and collect leaked
user credentials. User credentials can be leaked by
keyboard sniffing [11] (attackers extract passwords
from keystrokes), or password fields sniffing [18], [8]
(attackers directly extract passwords from the entered
password). Although there are currently no system-
level defenses against keyboard sniffing, developers
can enforce security mechanisms on keyboards (e.g.,
disabling the accessibility event propagation) to pre-
vent keystrokes from being leaked [18]. Password
fields sniffing can be defended at the system level
if users have configured the Android OS securely.
To this end, users need to turn off the “Make pass-
words visible” option in Settings to prevent just-
entered password characters from being displayed on
the screen. Consequently, the most recent character
of a password will not be leaked through accessibility
events. In summary, the feasibility of passive password
stealing attacks highly depends on the environment the
victim is in, resulting in limited generality.

• Active Attacks. In this type of attack, attackers di-
rectly intercept user inputs by actively hijacking the
input or output channels of user credentials. In these
attacks, the accessibility service is used to determine
when to launch the attacks. For example, an attacker

launches a phishing app when the victim attempts
to launch the real app [21] and logs the entered
username and password. Through the accessibility
service, the malware knows when the victim launches
the real app based on the collected accessibility events
(which contains the information of interest such as the
package name of the real app). Other than the full-
window hijacking, malware can also use overlays to
hijack specific UI components [11] and, again, acces-
sibility services can be used to determine the timing
of such attacks. For instance, malware can place well-
crafted visible overlays above credential input boxes,
thus tricking victims into entering their passwords
into attacker-controlled widgets. However, this type of
attacks have been mitigated, as Android now notifies
users when an overlay stays in the foreground [35].
There is also an attack that switches the default input
method (IME) used by the system to a malicious third-
party IME [18]. However, the attacker has to perform
several UI operations using APIs provided by the ac-
cessibility service, which the victim can easily notice.
Finally, malware can programmatically set the system-
level default text-to-speech (TTS) engine, which can
intercept all user inputs by design [17]. However, this
attack no longer works on newer versions of Android.
In summary, the stealthiness of active password steal-
ing attacks cannot be well guaranteed due to system-
enforced defenses (e.g., the overlay hijack attack) or
the limitation of the attack itself (e.g., TTS hijack).

III. OBSERVATION AND THREAT MODEL

A. Key Observation

While Android has introduced countermeasures to prevent
the accessibility service from stealing user passwords, we
find that there is still a side channel: recall that find-
AccessibilityNodeInfosByText(text) accepts a
specific string and returns a list of UI components containing
the string. However, the password input box is also a UI
component, and theoretically, it can be identified by find-
AccessibilityNodeInfosByText(text) as long as
it contains the specified string. To our surprise, Android
currently does not prevent password input boxes from be-
ing searched by findAccessibilityNodeInfosBy-
Text(text), and Android does not even raise alerts to
users. As such, assume that a user enters his or her pass-
word into the password input box, and being an attacker,
we can query whether a specific string is in the user’s pass-
word by invoking findAccessibilityNodeInfosBy-
Text(text) and checking whether the returned list contains
the password input box. As the user continually enters his
or her password, the text within the password input box
will change accordingly, and the attacker may need to query
multiple times in order to completely derive the password.

As an example, consider a user who needs to enter
the password “password” character by character into
the password input box. When the user enters “p”, the
attacker is notified by an accessibility event signaling that
the password text has changed. The attacker then uses
findAccessibilityNodeInfosByText(text) to
enumerate all possible letters, numbers and symbols (e.g.,
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Fig. 1: Overall design of the CONQUER attack

“a”, “b”, “1”). Consequently, when the attacker feeds the
character “p” into findAccessibilityNodeInfosBy-
Text(text), the function returns a list of UI components
including the input box. The attacker then knows “p” is the
first character of the user’s password. Similarly, when the user
enters the second character of the password, the password
text becomes “pa”. If the attacker feeds this string (i.e., “pa”)
into findAccessibilityNodeInfosByText(text),
the input box will be returned. Please note that before this
round of enumeration, the attacker had already determined
that the first character of the password is “p”, and he or she
only needs to attach a single character to the first character
to assemble the password string. By using the same method
repeatedly, the attacker is able to recover each remaining
character of the password.

B. Threat Model and Assumptions

The objective of our attack is to steal passwords from regu-
lar users. We exclude individuals who rely on the accessibility
service (e.g., visually-impaired individuals), because they often
use the touch exploration mode. In this mode, passwords are
directly leaked through accessibility events and our attack is
not necessary. We make four assumptions for our attack. First,
we assume that victims have installed the malware on their
Android mobile devices and granted it the accessibility service
permission. This assumption is reasonable because many prior
studies that target or abuse the accessibility service (e.g., [11])
had similar assumptions. Besides, recent research [7] has
revealed that users are willing to grant whatever permissions
the apps request if they wish to use them. Therefore, we
believe that malware can lure users into granting such
permissions unsuspectingly. Second, we assume that victims
are using the latest Android phones, as older versions of
Android are easier to compromise using attacks introduced
in previous efforts [17], [11], [18]. Third, we assume that
victims have turned off the “Make Passwords Visible”
option in order to prevent characters of the password from
being directly extracted through accessibility events. Finally,
although the techniques we introduced can be used to deploy
other attacks (e.g., obtaining users’ keystrokes beyond just
their passwords), we particularly focus on password stealing
attacks given their high security implications.

IV. OVERVIEW OF CONTENT QUERIES (CONQUER)
ATTACK

Based on the observations and assumptions outlined in
§III-A, we propose Content Queries (CONQUER) attack,
which can be leveraged by the malware to steal user passwords.
In the following, we first present the basic workflow of the
CONQUER attack, then introduce challenges and the solutions,
followed by the overall design of the CONQUER attack as
shown in Figure 1.

A. Basic Workflow

At a high level, the basic workflow of CONQUER attack can
be broken into four steps: (i) The malware registers (①) for the
accessibility service to receive the intended events (e.g., events
triggered by inputting the password). We have omitted the
details of these techniques for brevity as they are well-known.
(ii) When the user enters the password (②), the malware will
get notified (③.1-2) and be able to determine relevant events
by inspecting the types of the incoming events (④). (iii) When
the malware determines that the user has entered a specific
character of the password, it then extravagantly enumerates
possible combinations to infer that character (⑤) using the
observation introduced in §III-A. (iv) When the user hits the
login button (⑥), the malware gets notified (⑦-⑧) and knows
that the user has finished entering the password. At this point,
the malware has learned the entered password, which forms
the output of the malware.

B. Challenges and Solutions

While the attack is theoretically easy to deploy, it still
faces various challenges in practice. Generally speaking, there
are at least three challenges that attackers must overcome to
successfully launch the CONQUER attack. Below, we explain
each challenge in greater detail:

(C-I) Differentiating Passwords and Descriptions. The
accessibility service has provided content labels to assist
users in understanding the meaning of UI elements, and
the android:contentDescription attribute is one
of these labels. For example, app developers can set the
android:contentDescription attribute to “Password”
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for a password input box to help users understand that
they need to enter their passwords into this field. However,
when issuing queries using findAccessibilityNode-
InfosByText(text), for UI components such as pass-
word input boxes, the content of the android:content-
Description attribute will also be searched along with the
actual text (e.g., the entered password). As a consequence, if
the content description is set for the password, we cannot deter-
mine whether the searched string is in the content description
or the password text. For example, assume the password to
be entered is “passport”, then the strings “p”, “pa”, and “pas”
will exist in both the password (i.e., “passport”) and the content
description (i.e., “password”). As a result, the password node
will be returned in all queries made on these searched texts.
Being the attacker, we cannot know whether these strings are
part of the password or just part of the content description.

To address this challenge, one intuitive solution is to simply
keep all strings indicated to be contained in the password
box by the query results, and use these strings as the basis
for subsequent queries. For example, queries for each letter
in “password” will succeed during the first round of queries.
Therefore, we save all these letters as password candidates
of length 1 (e.g., “p”, “a”, “s”). During the second round
of queries, multiple enumerations are carried out based on
the saved 1-character password candidates respectively, and
we further get multiple new password candidates of length
2 (e.g., “pa”, “as”, “ss”). However, this solution requires
more rounds of character enumeration since multiple strings
are saved as candidates (instead of only one string under
normal cases), which can be extremely time-consuming and the
queries cannot finish in time (e.g., before the next character is
entered). Our preliminary experiments using this naive method
have confirmed this drawback: it can take several seconds to
finish one round of queries after a single character input.

Differentiating Passwords via Lazy Queries (§V-A)

This challenge only limits our knowledge of whether
characters present in the content description are also
present in the password. However, it does not prevent
us from querying characters that are only present in
the actual password. When we query a character that
is not in the content description and it returns the
password node, the influence of the content description
is eliminated and we can then begin querying the rest
of the password (using lazy queries).

(C-II) Breaking Defenses enabled on Victim Apps. Some
real-world Android apps do not actively send accessibility
events when users enter passwords (i.e., ③.1 in Figure 1
is blocked), even though the app will still respond to in-
quiries from other apps. This can be achieved by extend-
ing the AccessibilityDelegate class and overriding
the SendAccessibilityEvent() method. When victim
apps block outgoing password-related accessibility events, no
app using the accessibility service can receive password-
related accessibility events passively. We speculate that this
design is intended to protect against previous accessibility-
based password-stealing attacks (e.g., [18], [8]). As a result,
when targeting these apps, we cannot receive notifications
when a victim is entering the password and the associated

password node cannot be directly acquired from accessibility
events. For example, when users try to log in to Alipay, no
password-related accessibility events are sent while they are
entering their passwords.

Thwarting Defenses via Active Queries (§V-B)

This challenge only prevents us from knowing when
and which object to query passively. However, being an
attacker, we can first try to locate the password input
box to be queried, then actively query the password
length to see if the victim has already started entering
the password.

(C-III) Recovering Password from Case-Insensitive
Strings. Initially, findAccessibilityNodeInfosBy-
Text(text) is designed to assist users with disabilities and
has the requirements of being robust. As such, the match is
case insensitive containment (e.g., findAccessibility-
NodeInfosByText(text) identifies buttons that contain
“login” regardless of whether the text “login” is in upper or
lower case). This is reasonable: if someone is using TalkBack
to receive real-time spoken feedback, he or she will likely
not care the case of the letters. However, being a piece
of malware that attempts to steal user passwords, it must
have the capability of knowing whether the password is in
upper or lower case. Intuitively, the malware can enumerate
all the combinations of upper and lower case letters in a
case-insensitive string (e.g., “Password”, “PAssword”, etc.).
However, it is very costly. For a password that has 8 letters,
there could be 64 (i.e., 28) combinations. While the attacker
can still enumerate those combinations, it is not particularly
practical (e.g., many apps will block accounts after several
failed login attempts).

Inferring Passwords via Side Channels (§V-C)

We can still try to recover user actions (e.g., switching
between cases) by exploiting other side channels. For
example, since it usually takes longer to enter the next
letter if a user switches case, this temporal side channel
can be exploited to detect case switches.

V. DETAIL DESIGN OF CONQUER

A. Lazy Query for Password Differentiation

The Lazy Query Algorithm. Since content descriptions are
usually short phrases, it is rare for them to cover all characters
in the password. Based on this intuition, C-I can be handled
by lazy query: the content of the password is not queried
until users have entered a character that is not in the content
description into the password box. As an advantage of this
strategy, we can completely eliminate the side effects brought
by the content description. The complete lazy query algorithm
is shown in Algorithm 1. Let Sc be the set of all (case-
insensitive) characters in the content description, and S be the
set of all characters that can be used in a password. Initially,
we have Sc ⊂ S. During the lazy query process, every time
a character is entered, we first check if the character is not
present in the content description by applying single-character
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queries on Sc (line 7-13). If we fail to get a match, the value
of the queried character is ignored. However, the number of
ignored characters are recorded (line 25-26). Once we get
a match, the password and the content description can be
differentiated starting from this character. We then perform
backward queries to determine the value of all previously
ignored characters by repeatedly performing queries on Sc

(line 14-24), and the collected password is finally returned.
With the result from the differentiation process, subsequent
queries can be handled easily using the normal query method.

Algorithm 1: The Lazy Query Algorithm
Data: set of characters presented in content

description Sc, set of all possible characters in
passwords S, the password node Np

Result: case-insensitive password P
1 Function main(Np, Sc, S):
2 cnt← 0;
3 P ←′′;
4 belazy ← True;
5 while belazy do
6 if a character is entered then
7 for ch ∈ (S − Sc) do
8 if Query(Np, ch) then
9 belazy ← False ;

10 P ← P + ch;
11 break
12 end
13 end
14 if ¬belazy then
15 while cnt > 0 do
16 for ch ∈ Sc do
17 if Query(Np, ch+ P ) then
18 P ← ch+ P ;
19 cnt← cnt− 1;
20 break
21 end
22 end
23 end
24 break
25 else
26 cnt← cnt+ 1;
27 end
28 end
29 end
30 return P ;
31
32 Function Query(Node, Text):
33 flag ← False;
34 qr ← Node.findAccessibilityNode-

InfosByText(Text);
35 if Node ∈ qr then
36 flag ← True;
37 end
38 return flag;

For example, consider a scenario where the password
we want to query is “tendollar” and the target app is
com.infonow.bofa, whose password field has the content
description “enter”. We first obtain the set Sc = {‘e’, ‘n’,
‘r’, ’t’} from the content description. After the user enters

“t”, we perform single-character queries on Sc and no match
is found. The same process is repeated after the user enters
“e” and “n”, and no match is found as well. However, after
the user enters “d”, we get a match through single-character
queries. We then perform backward queries on Sc to determine
previously entered characters: “ed”, “nd”, “rd” and “td” are
queried and we can get a match on “nd”. The same steps are
repeated until we obtain “tend”.

It is worth noting that, although it is very rare, the lazy
query algorithm may fail if: 1) the password happens to be
a sub-string of the content description; or 2) the content
description includes a significant portion of the characters in
a password. We cannot handle the first scenario. However, the
second scenario can still be handled. The basic idea is to record
sub-strings that are only present in the content description, and
combine them with characters within the content description
to derive new sub-strings that are only possible to be present
in the password and query them using the API. Once such a
sub-string is found, the password can be quickly identified.

Specifically, we start by defining Scj as the set of all sub-
strings in the content description with length j, specifically,
we define Sc0 = ∅. By definition, it is clear that Sc1 =
Sc. We further define Snj = Sc(j−1) × Sc − Scj , where
the Cartesian product symbol represents string concatenation.
Whenever a character is entered, single-character queries will
first be performed on Sc in case a character not in the content
description is entered. If it is not the case, assume the current
length of the password is k, strings in Snk are enumerated and
queried. Since Snk∩Sck = ∅ by definition, if we get a match,
the queried string must be the current password and we can fall
back to the normal query strategy since then. Otherwise, we
know the current password lies within Sck, but the specific
value needs to be determined by subsequent queries. If we
cannot decide the actual value of the password until password
submission, we can only make an assertion that the password is
in Scl, where l is the final length of the password. However,
since extra queries are needed compared to lazy query, and
the size of Snj is large (think about a content description that
covers all characters), this algorithm comes with a higher time
cost. For example, assume the content description is “enter”,
but the password is “teren”, we first obtain Sc1 = {‘e’, ‘n’, ‘r’,
‘t’}, Sc2 = {“en”, “nt”, “te”, “er”}, Sn1 = Sc, and Sn2 =
{“ee”, “et”, . . . , “tt”}, etc. When “t” is entered, no match will
be found on Sc and Sn1. The same procedure repeats for the
second and the third character. When the fourth character “e”
is entered, the current password is “tere” and a match will be
found on Sn4, and we hence know “tere” only exists in the
password.

B. Active Queries for Breaking Enabled Defenses

Even though we will not be passively notified by these
apps, we can actively query the victim apps to monitor their
status changes. To this end, we first locate the password node.
This can be done by first identifying the view ID of the
password input box (e.g., by reverse engineering or debug-
ging), then invoking findAccessibilityNodeInfos-
ByViewId(id) on the root node of the active window of
the victim app with the previously acquired view id. Once the
password node Np is located and acquired, we can repeatedly
query the victim app to obtain the current length of the
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password via Np.getText().length() (i.e., ③.a-d in
Figure 1). As such, we can successfully gather information
about when the user has entered a character into his or her
password and perform queries accordingly.

We now demonstrate this process using the
aforementioned Alipay example (whose package name
is com.eg.android.AlipayGphone). First, we locate
the password input box and obtain its view ID, which is
com.ali.user.mobile.security.ui:id/content.
After that, the corresponding AccessibilityNodeInfo
object of the password input box can be obtained by invoking
findAccessibilityNodeInfosByViewId(id)
on the root node of the active window (obtained via
getRootInActiveWindow() as discussed earlier)
with the parameter set to the acquired view ID. With
the collected password node Np, we can repeatedly
request updates on the current length of the password
via Np.getText().length() and determine when we
need to perform queries based on the increase of the password
length.

C. Side Channels for Passwords Resolution

Intuitively, it may take the users longer to enter the next
letter if they switch between upper and lower case letters. This
temporal difference can be used as a side channel to detect
when the user is switching between cases. However, relying
solely on this temporal side channel is not reliable under
real-world scenarios for two reasons. First, most keyboards
provide two ways to switch cases: using caps-lock or shift,
but such information cannot be effectively derived through the
temporal side channel. Second, the user may need to switch
between different keyboard layouts to enter a more complex
password, which, like case switching, also takes longer and
hence can be indistinguishable for the temporal side channel.
To address the limitations of the standalone time-based side
channel and further improve the robustness of the password
resolution process, we additionally exploit a state-machine-
based side channel to recover characters with better precision
(e.g., most keyboards share the same operation logic for case
switching, therefore a general state machine can be built to
mimic the case switching process). The details of the two side
channels are discussed below.

(I) Time-based Side Channel for Case Switch Detection.
In order to use the time-based side channel to detect case
switches, two challenges must be overcome: First, typing speed
varies significantly among people [26], making it difficult to
create a universal model that works for everyone. Second, the
complexity of passwords can also vary widely, with some re-
quiring users to switch between different keyboards in addition
to changing cases. This makes it harder to distinguish between
case switches and keyboard switches, as the time intervals
between characters may be similar in both cases. For example,
consider the password “dot#COm”. To enter this password, the
user must switch to the symbols keyboard to enter “#”, then
switch back to the letters keyboard and change the case to
enter “c”. However, it is difficult to determine whether the
user changed the case before entering “c”, as the time interval
between “#” and “c” may be large due to the keyboard switch
and indistinguishable from a large interval caused by a case

d o t # C O md o t # C O m

t1,2t1,2 t2,3t2,3 t3,4t3,4 t4,5t4,5 t5,6t5,6 t6,7t6,7

t1,2t1,2 t2,3t2,3 t5,6t5,6 t6,7t6,7

t'1,2t'1,2 t'2,3t'2,3 t'5,6t'5,6 t'6,7t'6,7

z-score normalization
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d o t # C O md o t # C O m

NSCNSC NSCNSC NSCNSC NSCNSC NSCNSCSCSC

>= threshold?

Step-(II)

Step-(I)

Fig. 2: Workflow of the time-side-channel-based case switch
detection

switch. As shown in Figure 2, we tackle the two challenges
through a two-step process:

Step-(I): Detecting Case Switches Using Normalized Typing
Intervals. To address the first challenge, instead of trying to
determine an absolute-time-based model, we build a relative-
time-based model using normalized time interval sequences.
Normalization can help to reduce individual differences and
increase the generality of our model, making it more ef-
fective at detecting case switches. Assume the input time
interval sequence t for a password with length n is given as
t = (t1,2, t2,3, . . . , tn−1,n), where ti,i+1 represents the time
interval between entering the ith and the (i + 1)th character.
Then t is first normalized with z-score:

tnorm =
t− µt

σt
(1)

where µt is the average of t, and σt is the standard deviation
of t. We further define the true positive rate for detecting case
switches and non-case-switches as TPRCS and TPRNCS,
respectively. With the normalized tnorm, a universal optimal
threshold value that maximizes TPRCS×TPRNCS can be
obtained to detect potential case switches.

Step-(II): Improving Robustness by Ignoring Keyboard
Switches. To handle the second challenge, our key idea is to
only normalize the time intervals between letters. In contrast,
all other intervals are discarded before the normalization,
and reassigned to the value −∞ afterwards. The rationale
behind this solution is that by only considering time intervals
between letters, we can eliminate the influence of keyboard
switching, which can help to create a more robust model.
Take the previous password “dot#COm” as an example, the
time intervals between “t” and “#”, and “#” and “c” will be
discarded during normalization and reassigned the value −∞.
Formally, assume D = {ti1,i1+1, ti2,i2+1, . . . , tik,ik+1} is the
set of all discarded time intervals, then the original time inter-
val sequence t = (t1,2, . . . , ti1,i1+1, . . . , tik,ik+1, . . . , tn−1,n)
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Fig. 3: Case state NFA and state forking

is first transformed to t′ = (t1,2, . . . , tn−1,n), where all
intervals in D are removed. We then apply the normalization in
Equation (1) on t′ to obtain the normalized sequence t′norm =
(t′1,2, . . . , t

′
n−1,n). After the normalization, all discarded time

intervals are reassigned the value −∞ and we finally get
t̃ = (t′1,2, . . . ,−∞, . . . ,−∞, . . . , t′n−1,n). By acquiring an op-
timal threshold value on t̃ using the same method as discussed
previously, we can detect case switches more precisely.

It is important to ensure that the threshold value obtained
is generally applicable in order to successfully launch our
attack. In fact, as an attacker, our goal is to steal and recover
the original user passwords. However, it is unlikely that
we will have sufficient prior knowledge about all potential
victims to compute an optimal threshold suitable for the entire
population. Instead, we may need to collect data (either from
ourselves or from others) in advance to compute a threshold
that can be used in future attacks. We will show the generality
of our method in §VI by computing a threshold based on
the MOBIKEY [4] public dataset, and reuse this threshold
throughout our experiment.

(II) State-Machine-based Side Channel for Characters
Recovery. As discussed, one way to potentially recover user
actions, such as switching between cases, is to utilize other
sources of information as side channels. For instance, it typi-
cally takes longer to type the next letter after switching cases.
This time delay can be used as a side channel to detect when a
case switch has occurred. However, even with the time-based
case switch detection method, there are still several vital pieces
of information that cannot be inferred. To tackle these prob-
lems, we first build a non-deterministic finite automaton (NFA)
to recover passwords that contain only case switches. We then
build upon this NFA by designing a state forking mechanism
to recover passwords that also include keyboard switches:

Step-(I): Dealing with Case States Using Non-deterministic
Finite Automaton (NFA). First, we do not know whether the
user is switching cases using caps-lock or shift. As a conse-
quence, we cannot determine the case of the next letter to be
entered, which we refer to as the case state. Second, since our
method only considers the time intervals between letters, and
discards all other intervals (such as those between symbols and
letters) during normalization, we cannot accurately determine

whether case switches occurred when the user switched back
to the letters keyboard. For example, if the original password is
“dot#COm”, we are unable to know that the user has switched
cases before entering the letter “c”.

To address these drawbacks, we have implemented a key-
board case state machine as shown in Figure 3. This machine
includes a non-deterministic finite automaton (NFA) driven
by case switches to recover possible case states for the first
drawback and a state forking mechanism to recover possible
case states after the user switches back to the letters keyboard
for the second drawback. The three states and the transition
conditions in the case state NFA are described as listed below:

• Lowercase State: Lowercase state models the normal
keyboard state. In the lowercase state, the next entered
letter is assumed to be in lowercase. The NFA will
transition to either the switching state or the uppercase
state until a case-switching action is detected.

• Switching State: Switching state models the keyboard
state after the shift key is pressed. In the switching
state, the next entered letter is assumed to be in up-
percase. The NFA will transition back to the lowercase
state immediately after a character is entered.

• Uppercase State: Uppercase state models the key-
board state after the shift key is pressed twice (i.e.,
caps-lock). In the uppercase state, the next entered
letter is also assumed to be in uppercase. However,
unlike the switching state, the NFA will only transition
to the lowercase state after a case-switching action is
detected.

During the password recovery process, the case state NFA
is used to determine the case of each character in the case-
insensitive password. To this end, the NFA processes each
character in the password and its corresponding input time
interval in order. Once a case-switching action is detected, the
current case state will change according to Figure 3. Since
the next state may be diverse, we generate a new copy of
the currently recovered password with different case states
and recover the corresponding character according to the case
state within each copy. Moreover, since the time interval
sequence starts with the interval between the first and the
second input character, the initial state of the password is
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unknown. Therefore, we will have three copies of the initial
password (i.e., an empty string) with the case state set to
lowercase, switching, and uppercase, respectively.

As the number of case switches in the password grows, the
maximum number of possible passwords recovered through the
NFA can be shown to form a Fibonacci sequence. To prove
this, we first define ns as the number of detected case switches,
and aln as the number of passwords with the case state set
to lowercase after n case switches. Similarly, we define asn
and aun respectively for the switching and uppercase state.
The initial condition is defined by Equation (2). According to
Figure 3, the uppercase state will transition to the lowercase
state on a case switch, the lowercase state will transition to
either the switching or uppercase state on a case switch, and
the switching state is temporary, which will transition to the
lowercase state once the next character is entered. Therefore,
we have the relationship between aln, asn and aun as shown in
Equation (3).

al0 = 1, as0 = 1, au0 = 1 (2)

aln+1 = aun

asn+1 = aln + asn

aun+1 = aln + asn

(3)

Let Qn be the number of passwords after n case switches.
Through a series of derivations as shown in Equation (4), we
can see that {Qn} is a Fibonacci sequence with Q0 = 3 and
Q1 = 5.

Qn+2 = aln+2 + asn+2 + aun+2

= aun+1 + aln+1 + asn+1 + aln+1 + asn+1

= Qn+1 + aun + aln + asn
= Qn+1 +Qn

(4)

While the Fibonacci numbers will increase exponentially, it
is important to note that Qn can be guaranteed to be small in
most cases. In fact, previous research [20], [23] has shown
that even when password composition policies require the
inclusion of at least one uppercase letter, the average number of
uppercase letters used in passwords is typically no more than 2.
With this assumption, even in the worst-case scenario, in which
a password contains two non-adjacent uppercase letters that are
both located in the middle of the password (therefore 2 case
switches are needed), the number of possible combinations is
limited to 8 at most given that Q2 = 8.

Step-(II): Dealing with Extraordinary Cases Using State
Forking Handler. While the case state NFA is effective
at handling continuous letter input, complex passwords may
require the user to switch keyboards from and back to the
letters keyboard. We handle this situation by proposing a state
forking mechanism. The state forking mechanism is activated
whenever the user switches back to the letters keyboard (re-
ferred to as keyboard switches for brevity), which can be easily
detected from the already collected case-insensitive password.
During state forking, three copies of the current password with
three different case states are created, corresponding to the

three different possibilities respectively: lowercase, switching,
and uppercase.

To analyze the theoretical password recovery performance
with state forking enabled, we further assume that the number
of detected keyboard switches is ms. The number of passwords
with the lowercase state after m keyboard switches and n
case switches is defined to be aln,m. Similarly, asn,m and aun,m
are defined for the switching and uppercase state respectively.
Now let Qn,m be the number of passwords after m keyboard
switches and n case switches. According to Equation (4), we
immediately have Equation (5). For every keyboard switch
detected, 3 new copies of the password with 3 different case
states are generated, therefore Equation (6) holds.

Qn+2,m = Qn+1,m +Qn,m (5)

Qn,m+1 = 3Qn,m (6)

As shown in our theoretical analysis, the number of guessed
passwords heavily depends on the number of case switches
and keyboard switches. If the number of case switches and
keyboard switches is large, the total number of recovered
possible passwords may be up to dozens or hundreds. How-
ever, according to our statistical analysis (see §VI-A) on the
Rockyou password dataset [28], which consists of 14,344,356
unique passwords and their use counts leaked from a real-
world website, shows that for passwords used by 99.65%
of the users, the number of case switches and keyboard
switches is small. Therefore, the theoretical password recovery
performance of our model is sufficient in most scenarios. Our
analysis also shows that among users who have passwords
with at least one letter, 99.55% of these passwords follow one
of three simple patterns: all letters are lowercase, all letters
are uppercase, or the first character is the only uppercase
letter. Hence, we include these three patterns in the recovered
possible passwords to increase the robustness of our attack.

TABLE II: Vendors, device names and OSs of mobile phones
used by participants

Vendor Device Name OS

Xiaomi

Mi 11 Android 12
Mi 10 Pro Android 12
Mi 10 Android 12
Redmi K30 Pro Zoom Edition Android 11

Vivo
IQOO Neo5 Android 12
IQOO Z1 Android 11

OPPO Reno5 Android 12
Meizu 16T Android 9
OnePlus 5T Android 9
Samsung Galaxy S8 Android 8.0

Huawei

Mate 20 HarmonyOS 2.0.0
Mate 30 HarmonyOS 2.0.0
Mate 40 Pro HarmonyOS 2.0.0
P40 Pro HarmonyOS 2.0.0
Nova 4 HarmonyOS 2.0.0
Nova 5 HarmonyOS 2.0.0

Hornor
30 Pro HarmonyOS 2.0.0
10 Lite HarmonyOS 2.0.0

* Note: duplicated (vendor, device name, OS) tuples are ignored.

VI. EVALUATION

In this section, we conduct an experimental evaluation
of CONQUER. We first illustrate the experiment setup, then
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TABLE III: Selected Passwords. “x” represents the number of case switches, and “y” represents the number of keyboard switches.

Category (x, y) Passwords

(0, 0)
chocolate password1 butterfly liverpool basketball elizabeth
tinkerbell spongebob alexandra beautiful alexander christian

(0, 1)
love4ever 1password 123456789a 1princess hotmail.com yahoo.com
friends4ever 1truelove 1babygirl love4life c.ronaldo 4everlove

(0, 2)
i love you 2cute4you 2bornot2b ch0c0late @hotmail.com 2hot2handle
2gether4ever 1life2live l1verp00l 2pac4life i love me TEXT ONLY AD

(1, 0)
HarryPotter JesusChrist ChrisBrown HelloKitty LinkinPark iloveJesus
TokioHotel BettyBoop CyoiydgTv JohnnyDepp SpongeBob HannahMontana

(1, 1)
iydgTvmujl6f iydgTvgl,v glk;]ydKIN 123qweASD ry=ibomiN Tbfkiy9oN
okiuiy9oN Lbibiy9oN vkiuiy9oN iydgTv,kd 0ydidAKIN lbibiy9oN

(1, 2)
l6fkiy9oN iydgTvm6d;yo iy9ok4iIN The RockYou Team 0yomiN0bik 4ymik4iIN
06Rkiy9oN 8ow,jrbgLK 06iuiy9oN v6[]iy9oN l64kiy9oN JOhNY exstasy nemis

(2, 0)
FallOutBoy diiIbdkiN MyChemicalRomance AaBbCc123 WinnieThePooh TaeKwonDo
JesseMcCartney IchLiebeDich CrashIntoMe99 dHgTvojkiyd TeQuieroMucho SuzieAndRocco

(2, 1)
iydotgfHdF’j dyPPkiy9oN iydotgfHdF\\’j l6iLydfbN v4blbmTbN obLkiy9oN
mbrpN;iiI db99bLydfbN vii5lbmTbN oyomNiyd,kiN8 m5vuIbsTd8 gfHd,uxyPsk

(2, 2)
ob9bLkl9iN Mje4nGq6vL45 JaY14$P.rBoricua 2KaEle4cxK *mZ?9%ˆjS y712xC61vIHc
xXx-rebecca-xXx xAIvpˆjLb]x pacS*ptt-*KnKA* l6mTkiy9oN l6mTb]ydKIN k6kgWW7WuM

explain the experiment results by answering several research
questions.

A. Experiment Setup

Volunteers and Testing Environment. We recruited 20 vol-
unteers to participate in the experiment, which is a typical
setup used in previous research (e.g., [11]). The volunteers
were recruited from our college campus and were all students.
The vendors, device names and OSs of the mobile phones
used by the participants are listed in Table II. The experiment
was approved by the IRB. The volunteers were instructed
to install the provided malware and victim app on their
own mobile phones, and to give the malware access to the
accessibility service. They were then asked to input several
pre-selected real-world passwords into the victim app using
their usual keyboards. The case-insensitive passwords and the
input time interval sequences collected by the malware during
the experiment are later processed to evaluate the efficiency of
CONQUER in recovering passwords.

Password Selection. The real-world passwords used in the
experiment are selected from the Rockyou password dataset.
As discussed in §V-C, the number of case switches and
keyboard switches are two main factors that influence the
ability to recover passwords. Therefore, we first categorize
these passwords by the number of case switches and keyboard
switches, then select passwords from different categories.
Based on our analysis of the Rockyou dataset, we found that
among all users using passwords containing at least one letter,
passwords used by 99.65% of them have a case switch and
keyboard switch count of no more than 2 times. Therefore,
we focused our experiment on the 9 categories of passwords
that fall within this range. Within each category, we sorted
passwords that are longer than 8 characters and contain only
English keyboard characters based on their popularity (i.e.,
the number of users), and selected the top 12 passwords for
the experiment. In total, we selected 108 (9×12) real-world
passwords. The selected passwords are listed in Table III.

Experiment Guidelines. The selected 108 passwords were
randomly distributed to the 20 volunteers, with 8 volunteers
being assigned 6 passwords and 12 volunteers being assigned

5 passwords. To simulate the real attack scenario, we assumed
that different people use different passwords and therefore each
password was only assigned to one volunteer. Furthermore, to
simulate the fact that people are typically familiar with their
own passwords, each password was entered 20 times during the
experiment. To ensure that the volunteers were familiar with
the assigned passwords, we heuristically omitted data collected
during the first 10 inputs of a password and only considered
the last 10 user inputs of each password as valid data for the
experiment.

Metrics. We define three metrics for our experiment: TPRCS,
TPRNCS and one-time password recovery success rate.
TPRCS and TPRNCS are previously defined in §V-C and
are introduced to evaluate the effectiveness of the time-side-
channel-based switch detection method. We define a pass-
word recovery process as successful if the real password is
included in the set of recovered possible passwords. In real-
world scenarios, attackers generally only have one chance to
steal user passwords. Therefore, we propose to use the one-
time password recovery success rate as a metric, which is
defined as the ratio of successfully recovered passwords (out
of the selected 108 passwords) in a single round of password
input. Note that similar to the one-time password recovery
success rate, TPRCS and TPRNCS are also independently
calculated between rounds.

Fig. 4: Calculated TPRNCS-threshold and TPRCS-
threshold curve on the MOBIKEY dataset

General Threshold Calculation. To calculate a general
threshold for detecting case switches as discussed in §V-C, we
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(a) One-time success rate

(b) TPRCS

(c) TPRNCS

Fig. 5: Experiment results of the CONQUER attack

conducted a preliminary experiment on the strong password
(.tie5Roanl) dataset of the MOBIKEY keystroke dynamics
password database [4]. This dataset includes 3303 records
and provides many different features of keystroke dynamics
when entering the password, including time intervals between
keystrokes. Using the time intervals between keystrokes, we
can collect the time intervals between entering two letters.
As discussed in §V-C, the time interval between entering
“e” and “5” was discarded during normalization. However,
we did kept the time interval between entering “5” and “R”
because “R” is the only uppercase letter in the password.
This specific time interval was calculated as the summation
of keystroke intervals between “abc” and “shift”, and “shift”
and “R”, while the interval between “5” and “abc” was ignored
to minimize the impact of keyboard switching. After that, the
optimal threshold that maximizes TPRCS × TPRNCS was
calculated as previously discussed.

Figure 4 describes the relationship between TPRNCS and
the threshold, as well as the relationship between TPRCS
and the threshold on the MOBIKEY dataset. Using the metric
mentioned above, the threshold was calculated to be 1.028,
resulting in TPRCS and TPRNCS values of 0.9700 and
0.9692, respectively. To validate the effectiveness and gener-
ality of the time-and-model-based password recovery method,
we adopted this optimal threshold (i.e., 1.028) derived from
the MOBIKEY dataset throughout our experiment.

B. Experiment Results

RQ1. How does the pre-calculated threshold perform
in detecting case switches?

We measure TPRCS and TPRNCS to answer this
question. TPRCS and TPRNCS were calculated for the
entire set of 108 selected passwords, as well as for each
category of passwords, using the data collected from the last 10
rounds of password inputs. The threshold used to detect case
switches was set to 1.028 as previously discussed. The results
are shown in Figure 5(b) and Figure 5(c), where the notion “(a,
b)” represents a category of passwords with a case switches
and b keyboard switches. Note that for TPRCS, passwords in
categories (0, 0), (0, 1), and (0, 2) do not have case switches
and are therefore omitted in the figure. The overall TPRCS
and TPRNCS within the last 10 rounds ranges from 59.26%
to 68.51% and 88.69% to 90.87%, respectively. Interestingly,
we observed two diametrically opposite trends for TPRCS
and TPRNCS. For TPRCS, the value decreases as the
number of case switches increases, and the negative impact of
the number of keyboard switches on TPRCS becomes greater
as the number of case switches increases. However, when it
comes to TPRNCS, the value increases as the number of case
switches increases, and the increase in the number of keyboard
switches has a positive impact on this value. We believe that
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this phenomenon occurs because the increase of these two
numbers may make passwords more difficult to enter, thereby
violating the common input pattern exploited by the proposed
temporal-side-channel-based case switch detection method.

RQ2. Can CONQUER effectively steal user passwords
exploiting the two side channels?

To answer this question, we first measure the one-time
password recovery success rate. Similarly, the success rate was
calculated for all 108 selected passwords and for each category
of passwords within the last 10 rounds of input. Figure 5(a)
shows the obtained one-time success rate. The overall one-
time success rate ranges from 60.18% to 69.44%, with an
average of 64.91%. For passwords in categories (0, 0), (0,
1) and (0, 2), the success rate is 100% because they follow
the three most common patterns described in §V-C. For other
categories of passwords, the one-time recovery success rate
is related to TPRCS and therefore follows the same pattern
as TPRCS. The one-time recovery success rate is relatively
low for passwords in categories (2, 1) and (2, 2) due to their
high complexity. However, such cases are rare in real-world,
because among all users who use passwords with at least one
letter, only 0.02041% of them have deployed passwords in
these two categories. Additionally, we did not observe the
impact of smartphones keyboard layouts on our experiment of
20 subjects, as our method of detecting case switches utilizes
normalized typing intervals between letters, which will not
be affected by keyboard layouts. Finally, we evaluated the
stealthiness of CONQUER. CONQUER does not necessitate any
foreground UI operations, instead, it only executes background
queries. Therefore, except for possible delays caused by the
queries, victims should not detect any unusual behavior. Our
experiment validated this point: we explicitly asked the volun-
teers if they had observed any anomalies (including delays),
and none of them did. To demonstrate the high query efficiency
of CONQUER, we randomly generated 20 passwords of length
16 and recorded the time it took to successfully query them.
The results show that on average, it only takes 174ms to query
a password of length 16, including the time for inter-process
communication (IPC) and the time for actually processing the
query on the victim side (see §VII-B). In summary, CONQUER
is robust and can effectively recover passwords in most real-
world scenarios.

RQ3. Which Android versions are affected and how
many apps are subject to CONQUER attack?

Through manual verification, all Android versions from
4.1 to 12 (i.e., all currently officially supported versions)
are subject to CONQUER, which means that all system-
provided password field UI components and apps using these
components are vulnerable. However, Android apps may
use custom password input boxes, which could potentially
avoid this vulnerability. As such, we have designed and
implemented a framework for detecting vulnerable custom
password input boxes used by Android apps. Our frame-
work is built on top of Jadx [16] and Soot [30] to de-
compile Android apps, extract layout files, and perform
static analysis. We look for self-defined elements whose

android:inputType attributes represent password input
boxes and check if they follow two rules based on our root
cause analysis (see §VII-B) : (i) the class of the custom
password input box must be a subclass of TextView. (ii) the
class and its superclasses (excluding TextView) must not
override the findViewsWithText() method, and either
the getAccessibilityNodeProvider() method is not
overridden by these superclasses or it is overridden but no class
in the app has extended AccessibilityNodeProvider.

To measure the impact of CONQUER on these apps, we
collected 324,125 Android apps from AndroZoo[3] and per-
formed a large-scale security analysis on these apps using our
framework. We were able to successfully test 324,080 apps,
while 45 apps were unable to be tested because Jadx failed to
decompile them. Out of the 324,080 apps that we successfully
tested, 13,786 have custom password input boxes, and 13,001
out of the 13,786 apps (94.30%) implement their own custom
password input boxes based on TextView. By applying our
detection rules on these TextView-based custom password
input boxes, we found that all of them (100%) are vulnerable to
CONQUER. The evaluation results show that the vulnerability
has not been previously recognized by the community and has
a huge security impact.

VII. DISCUSSION

A. Responsible Disclosure and Ethical Considerations

We take ethics into the highest consideration. First, we
responsibly disclosed our findings to Google. However, Google
decided not to fix this vulnerability for two main reasons: 1)
this behavior is required for the accessibility service to function
as intended, and 2) potential security risks of granting the
accessibility service permission have been informed to users in
an alert window before they make the final decision. We agree
that the accessibility service depends on this API to function
normally, and there is no easy fix for the vulnerability. We also
argue that users often ignore security warnings for convenient
features [7], simply warning users of potential risks cannot
effectively defend against CONQUER. Second, the IRB of our
university approved all experiments involving volunteers in this
work. All attacks were carried out with the full knowledge
and consent of the participants, and no malicious acts were
performed throughout the experiments. Third, we have never
exploited this vulnerability to create or distribute malware, nor
have we disclosed any related information to unrelated people
or organizations.

B. Root Cause Analysis

We analyze the root cause of CONQUER to help summarize
the vulnerability scan rules proposed in VI-A and to identify
possible countermeasures that could reduce the potential se-
curity risk of this vulnerability. Generally speaking, the root
cause of this vulnerability is that the abused API does not
perform any security checks or restrictions when the object to
be queried is actually a password input box. As a result, an at-
tacker can continuously leak information from this vulnerabil-
ity and eventually obtain user passwords. To further understand
CONQUER, we referred to the Android source code (see List-
ing 1) to investigate the issue at the code level. When find-
AccessibilityNodeInfosByText(text) is invoked
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1 private void findAccessibilityNodeInfosByTextUiThr ⌋
ead(Message message)

{

↪→

↪→

2 final int flags = message.arg1;

3 ...

4 ...

5 final int accessibilityViewId = args.argi1;

6 final int virtualDescendantId = args.argi2;

7 ...

8 List<AccessibilityNodeInfo> infos = null;
9 try {

10 ...

11 final View root = findViewByAccessibilityId(ac ⌋
cessibilityViewId);↪→

12 if (root != null && isShown(root)) {

13 AccessibilityNodeProvider provider =

14 root.getAccessibilityNodeProvider();

15 if (provider != null) {

16 infos = provider.findAccessibilityNodeInfo ⌋
sByText(text,

virtualDescendantId);

↪→

↪→

17 } else if (virtualDescendantId ==

AccessibilityNodeProvider.HOST_VIEW_ID) {↪→

18 ArrayList<View> foundViews =

mTempArrayList;↪→

19 foundViews.clear();

20 root.findViewsWithText(foundViews, text,

21 View.FIND_VIEWS_WITH_TEXT

22 | View.FIND_VIEWS_WITH_CONTENT_DESCRIPTION

23 | View.FIND_VIEWS_WITH_ACCESSIBILITY_NODE_ ⌋
PROVIDERS);↪→

24 ...

25 }

26 }

27 } finally {

28 ...

29 }

30 }

Listing 1: Client-side findAccessibilityNodeInfos-
ByText() request handler in the Android source code

by an app with the accessibility service permission, the call
is forwarded via IPC and the request is finally handled by the
View object to be searched. A View object has two ways to
handle the request: First, the method getAccessibility-
Provider() is called. If an AccessibilityProvider
object is returned, the request is finally handled by the find-
AccessibilityNodeInfosByText(text) method of
the returned object. Second, if getAccessibility-
Provider() returns null, the request is handled by the
findViewsWithText() method of the View object itself.

By default, the getAccessibilityProvider()
method in View will return null, and hence findViews-
WithText() will be invoked to handle the request. How-
ever, the findViewsWithText() method in View only
searches the given text in the content description of the
View object and hence is not vulnerable to the proposed
attack. TextView is a subclass of View. In TextView, the
findViewsWithText() method is overridden to search
the given text in the object’s own text, while the get-

AccessibilityProvider() method is not overridden.
Therefore, TextView and all Android-provided TextView-
based classes, including those that are widely used as password
input boxes (e.g., EditText), are vulnerable to CONQUER
because they do not override the two methods.

C. Possible Mitigation

While CONQUER is hard to be defended as it is powered by
the normal functionalities of the accessibility service, there are
still possible mitigation measures. There are two possible ways
to mitigate the attack based on the discussion in §VII-B: either
at the system level, before the findAccessibilityNode-
InfosByText(text) request is handled by the client, or
at the application level, after the request is dispatched to the
client.

• System level mitigation There are several ways to
fix this vulnerability at the system level. One option
is to enforce security checks inside the server-side
accessibility service API findAccessibility-
NodeInfosByText(text) to ensure that a pass-
word node is not allowed to be searched. However,
identifying password nodes could be challenging in
general due to the existence of custom password input
boxes. Another way is to make the API only search
the given text inside content descriptions but not the
contained texts. However, this approach may hinder
the functionalities of the accessibility service.

• Application level mitigation To mitigate this vulner-
ability, Android app developers should always adopt
custom password fields instead of system-provided
TextView-based classes as password fields. Cus-
tom password fields inherited directly or indirectly
from TextView should either override the find-
ViewsWithText() method to make sure the pass-
word text is not searched, or override the get-
AccessibilityNodeProvider() method to re-
turn a custom AccessibilityNodeProvider-
based object.

D. Limitations

Our CONQUER is not perfect, and it has the following
limitations. First, though the range of possible passwords
is greatly reduced to make the attack more practical, the
remaining number of possible passwords could still be too
large to perform a successful login attempt when there is
a limitation on failed login attempts. Second, the time-and-
model-based password recovery method is not reliable for
long or complex passwords due to accidental input errors or
different typing habits (e.g., using keyboard pop-ups to choose
characters). However, smartphone sensors can accurately
detect touch events (e.g., [36]). Future research can use
sensors to more accurately distinguish case changes based on
the number of touches between letters. Additionally, passwords
may have semantic features [31], [33]. Future research can
also apply these semantic patterns to recover passwords.
Third, if victims use password managers to automatically fill
in their passwords, CONQUER can only steal case-insensitive
passwords by actively issuing content queries. As discussed in
§VI-B, querying passwords is efficient and if the victim does
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not press the login button within a very short period after the
password is filled in, the case-insensitive password can still be
obtained. However, original passwords cannot be efficiently
recovered due to the lack of input timing information. Previous
research has shown that the use of password managers is not
common, particularly on mobile phones [27], [2].

VIII. RELATED WORK

Android Accessibility Service Abuses. The Android acces-
sibility service has been proven to have exploitable design
shortcomings by previous research. Kraunelis et al. [21]
demonstrated that the Android accessibility service can be
exploited by malware to perform malicious actions such as
gaining control of the screen and stealing user credentials
through phishing. Jang et al. [17] studied the security of
accessibility support on four popular platforms and identified
several vulnerabilities. Fratantonio et al. [11] proposed the
famous “cloak and dagger” attack exploiting both overlay
and the accessibility service. Interestingly, the “cloak and
dagger” attack can be executed even without the overlay
permission before Android 8.0 [37]. Aonzo et al. [5] showed
that it is possible to conduct phishing attacks against password
managers by exploiting the accessibility service. Kalysch et
al. [18] discovered several security flaws in the accessibility
service and discussed corresponding countermeasures. Diao
et al. [9] conducted a systematic study of the Android ac-
cessibility framework through code review and app scanning,
and discussed several shortcomings as well as corresponding
attacks exploiting these weaknesses. Evidence has proven that
various real-world malware [10], [1], [39] have exploited
the attacks mentioned above. However, none of these works
have discovered the query-based side channel in the Android
accessibility service.

Accessibility Service Assisted Password Stealing Attacks.
Kraunelis [21] et al. pointed out that the accessibility service
can be exploited to steal user passwords through phishing, but
the malware has to completely disguise itself as a benign app,
which could be hard for complex closed-source apps. Jang et
al. [17] demonstrated that an Android malware exploiting the
accessibility service can alter system settings programmatically
without user consent and register a malicious text-to-speech
(TTS) application to steal passwords. However, this approach
no longer works on newer versions of Android. Instead, a
series of UI operations are needed to accomplish the same
goal. Fratantonio et al. [11] proposed three password stealing
attacks, two of which require the assistance of overlay. This
results in the display of an alert window on Android 8.0 or
later, which makes it less practical these days. The other attack
that only uses the accessibility service is achieved by inferring
keystrokes from keyboards, but this requires the keyboard used
by the victim to be vulnerable. However, some keyboards
have have addressed this vulnerability [18]. Kalysch et al.
[18] found that by exploiting screen recording or accessibility
events sniffing, the most recently entered password character
can be acquired, as the character is displayed on the screen
for a short period of time. However, this can be easily
defended by turning off the “Make passwords visible” option
in Settings. Therefore, all existing accessibility-service-
assisted password stealing attacks are much less practical or
feasible nowadays than when they were first proposed. In

contrast, our proposed attack is more stealthy, general, and
practical.

Android Accessibility Service Defenses. Compared with
attacks against the accessibility service, defenses on the frame-
work are rarely focused. Naseri et al. [25] proposed a frame-
work to help developers automatically detect and fix Android
apps that may leak passwords through the accessibility ser-
vice. Huang et al. [15] recently proposed a privacy-enhanced
accessibility framework to strike a balance between the regular
functionality of the accessibility framework and its security
mechanisms. While this is not the focus of this work, more
comprehensive security mechanisms should be studied in the
future.

Side-Channel-based Keystroke Inference. Previous research
has studied the feasibility of inferring keystrokes through vari-
ous side channels. The temporal side channel is one of the most
commonly exploited methods for keystroke inference [29], [6].
Smartphone sensors are also used to infer user keystrokes
[38], [32], [19], [36], [24], [22] due to the vast amount of
information they provide. We also exploit the temporal side
channel, but unlike previous works, it is used to detect case
switches rather than inferring keystrokes.

IX. CONCLUSION

In this work, we propose CONQUER: a novel content
query assisted password stealing attack. CONQUER breaks
existing Android defenses against password stealing attacks
by exploiting a query-based side channel in the Android
accessibility service, and can be abused to launch password
stealing attacks in real-world scenarios. To make CONQUER
practical, we introduce the lazy query technique to disam-
biguate query results, the active query technique to determine
query timing, and the temporal side channel and state machine
to recover case-sensitive passwords. Our experiment shows that
CONQUER can steal user passwords with a high success rate.
The attack has affected all Android versions from 4.1 and 12
and many Android apps. CONQUER has not been recognized
by the community and poses a significant security risk.
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