
Hashing

•  The Dictionary
•  a dictionary (table) is an abstract model

 of a database
•  a dictionary stores key-element pairs
•  the main operation supported by a

 dictionary is searching by key

Hashing

•  Applications
•  Telephone directory
•  Library catalogue
•  Books in print: key ISBN
•  FAT (File Allocation Table)

ADT	
template <class K, class E>
class Dictionary {
public:
 virtual bool IsEmpty () const = 0;
 virtual pair<K,E>* Get(const K&) const = 0;
 virtual void Insert(const pair<K,E>&) = 0;

 virtual void Delete(const K&) = 0;
};

Implementing a Dictionary
 with a Sequence

•  unordered sequence
–  searching and removing takes O(n) time
–  inserting takes O(1) time
–  applications to log files (frequent insertions,

 rare searches and removals) 34 14 12 22 18

34 14 12 22 18

Implementing a Dictionary
 with a Sequence

•  array-based ordered sequence
(assumes keys can be ordered)

•  - searching takes O(log n) time (binary search)
- inserting and removing takes O(n) time
- application to look-up tables
(frequent searches, rare insertions and removals)

12 14 18 22 34

Other Implementations?	

•  Binary search tree
– O(h) à O(n)

•  Balanced search trees
– O(logN)

•  Key comparison based
•  Can we do better?	

Application

•  China Telecom is a large phone company,
 and they want to provide enhanced caller ID
 capability:
– given a phone number, return the caller’s name
– phone numbers are in the range 0 to R = 1010–1
– n is the number of phone numbers used
– want to do this as efficiently as possible

Bucket Array
•  Each cell is thought of as a bucket or a

 container
– Holds key element pairs
–  In array A of size N, an element e with key k is

 inserted in A[k].

– A bucket array indexed by the phone number
 has optimal O(1) query time

– There is a huge amount of wasted space

(null) (null) Roberto (null) … …

 0000000000 9999999999 4109321568	

9/51

Bucket Array

•  A data structure
•  The location of an item is determined by:

–  directly as a function of the item itself: f(key)=key
– Not by a sequence of trial and error comparisons

•  Commonly used to provide faster searching
– O(n) for linear searches
– O (logn) for binary search
– O(1) for hash table

Space Solution

•  A Hash Table is an alternative solution
 with O(1) expected query time and O(n +
 N) space, where N is the size of the table

•  Like an array, but with a function to map
 the large range of keys into a smaller one
– e.g., take the original key, mod the size of the

 table, and use that as an index

T
.
. b

h(x)

Example

•  Insert item (401-863-7639, Roberto) into a table of
size 5

•  4018637639 mod 5 = 4, so item (401-863-7639,
 Roberto) is stored in slot 4 of the table

•  A lookup uses the same process: map the key to an
 index, then check the array cell at that index

401-
863-7639
Roberto

0 1 2 3 4

Static hashing	

•  dictionary pairs are stored in a table, ht, called
 hash table

•  ht is partitioned into b buckets: ht[0:b-1]
•  ht is maintained in sequential memory
•  each bucket holds s slots, each slot holds one

 pair, usually, s = 1
•  the address of a pair with key k is determined

 by a hash function h, h(k) is the hash or
 home address of k, h(k)∈{0, 1,…,b-1}

Notations	

T --- the total number of possible keys.

n --- the number of pairs in the hash table.

Definition:

The key density of a hash table is the ratio n/T.

The loading density (or factor) of a hash table
 is α=n/(s×b).

Usually, n<<T, and b<<T.

Notations	

•  2 keys k1 and k2 are said to be synonyms with
 respect to h if h(k1) = h(k2).

•  a collision occurs when the home bucket for
 the new pair is not empty.

•  an overflow occurs when a new pair is
 hashed into a full bucket.

•  when s=1, collisions and overflows occur
 simultaneously.

An Example	

•  b=26, s=2, n=10, hence α = ?
– 10/52 = 0.19

•  Keys: GA, D, A, G, L, A2, A1, A3, A4, E
•  h(k) = the first character of k

– A to Z corresponds to 0 to 25

•  GA, D, A, G, L entered	

ht Slot 1 Slot 2
0 A
1
2
3 D
4
5
6 GA G
. . .
. . .

25

•  A2 entered
•  Collision	 A2	

•  A1 entered
•  Collision
•  Overflow	

Analysis	

•  No overflow
•  Performance of insert, delete, search

– Hash function
– Searching within a bucket
–  Independent of n

•  However,Overflow is happening
– T >> b

From Keys to Indices

•  The mapping of keys to indices of a hash
 table is called a hash function

•  A hash function is usually the
 composition of two maps:
– hash code map: key ◊ integer
– compression map: integer ◊ [0, N - 1]

Hash function
•  Essential requirement of the hash function

– map equal keys to equal indices

•  A “good” hash function
– minimizes the probability of collisions
– Easy to compute

•  uniform hash function
– If k is a key chosen at random from the key

 space, then the probability that h(k)=i to be 1/b
 for all buckets i

Hash function
 compression map	

•  Division
–  h(k) = |k| mod N
– Selection of N is critical
– N =2r is bad because not all the bits are

taken into account

–  the table size N is usually chosen as a prime
number

k

r bits

Hash function
 hash code map	

•  Mid-square
–  h(k) is computed by using an appropriate

 number of bits from the middle of k2 to obtain
 the bucket address.

If r bits used, b= 2r

k2

r bits

Hash function
 hash code map	

•  Folding
–  k is partitioned into several parts, all but the last

 being of the same length
– These partitions are then added together to

 obtain the hash address for k.

k=12320324111220 is partitioned into parts
 that are 3 decimal digits long.

P1=123, P2=203, P3=241, P4=112, P5=20.

•  shift folding

 h(k)=123+203+241+112+20=699

•  folding at the boundaries

 h(k)=123+302+241+211+20=897

Hash function
 hash code map	

•  Digit Analysis
–  each k is interpreted as a number using some

 radix r

–  the digits of each k are examined

•  digits having the most skewed distribution
 are deleted

•  until the number of digits left is small
 enough to give an address

Hash function
 hash code map	

•  Converting Keys to integers
– for strings of a natural language, combine

 the character values (ASCII or Unicode)
 a 0 a 1 ... a n-1 by viewing them as the
 coefficients of a polynomial: a 0 + a 1 x
 + ...+ x n-1 a n-1

Overflow handling	

•  A key is mapped to an already occupied
 table location
– what to do?!?

•  Use a collision handling technique
– Open Addressing

•  Linear Probing
•  Quadratic probing
•  Double Hashing

– Chaining

Linear Probing	

•  hi(K) = (hash(K) + i) mod m

•  Insertion:
– Let K be the new key to be inserted, compute

 hash(K)
– For i = 0 to m-1

•  compute L = (hash(K) + I) mod m
•  T[L] is empty, then we put K there and stop.

–  If we cannot find an empty entry to put K, it
 means that the table is full and we should
 report an error.

Quadratic Probing	

•  hi(K) = (hash(K) + i2) mod m

•  Insertion:
– Let K be the new key to be inserted, compute

 hash(K)
– For i = 0 to m-1

•  compute L = (hash(K) + i2) mod m
•  T[L] is empty, then we put K there and stop.

–  If we cannot find an empty entry to put K, it
 means that the table is full and we should
 report an error.

Double Hashing	

•  Hash1(), Hash2(), ……,HashN()	

An Open Hash Table

key value

Hash (key) produces
an index in the range
0 to 6. That index is
the “home address”

0
1
2
3
4
5
6

Some insertions:
K1 --> 3
K2 --> 5
K3 --> 2

K1 K1info

K2 K2info

K3 K3info

Handling Collisions

0
1
2
3
4
5
6

K3 K3info

K1 K1info

K2 K2info

Some more insertions:
K4 --> 3
K5 --> 2
K6 --> 4

K4 K4info

K5 K5info

K6 K6info

Linear probing collision
resolution strategy

Search Performance

0
1
2
3
4
5
6

K3 K3info

K1 K1info

K2 K2info

K4 K4info

K5 K5info

K6 K6info
Average number of probes needed
to retrieve the value with key K?

K hash(K) #probes
K1 3 1
K2 5 1
K3 2 1
K4 3 2
K5 2 5
K6 4 4

14/6 = 2.33 (successful)

unsuccessful search?

Chaining	

•  Linear probing performs poorly
– the search for a key involves comparison

 with keys having different hash values
– making a local collision a global one

A Chained Hash Table

insert keys:
K1 --> 3
K2 --> 5
K3 --> 2
K4 --> 3
K5 --> 2
K6 --> 4

linked lists of synonyms

0
1
2
3
4
5
6

K3 K3info

K1 K1info

K5 K5info

K4 K4info

K6 K6info

K2 K2info

Search Performance
Average number of probes needed
to retrieve the value with key K?

K hash(K) #probes
K1 3 1
K2 5 1
K3 2 1
K4 3 2
K5 2 2
K6 4 1

8/6 = 1.33 (successful)

0
1
2
3
4
5
6

K3 K3info

K1 K1info

K5 K5info

K4 K4info

K6 K6info

K2 K2info

unsuccessful search?

successful search performance

 open addressing open addressing chaining
 (linear probing) (double hashing)
load factor
 0.5 1.50 1.39 1.25
 0.7 2.17 1.72 1.35
 0.9 5.50 2.56 1.45
 1.0 ---- ---- 1.50
 2.0 ---- ---- 2.00

Exercises: P475-3, 6	

