
1

Recursion: The Mirrors

(Walls & Mirrors - Chapter 2)

2

To iterate is human, to recurse, divine.

- L. Peter Deutsch

“It seems very pretty … but it’s rather hard
 to understand!”

 - Lewis Carroll

3

•  A recursive function is a function that calls itself.

•  Anything that can be solved iteratively can be
 solved recursively and vice versa.

•  Sometimes a recursive solution can be expressed
 more simply and succinctly than an iterative one.

4

factorial Function (n!)

factorial(0) = 1 (by definition) = 1
factorial(1) = 1*1 = 1*factorial(0)
factorial(2) = 2*1 = 2*factorial(1)
factorial(3) = 3*2*1 = 3*factorial(2)
factorial(4) = 4*3*2*1 = 4*factorial(3)
factorial(5) = 5*4*3*2*1 = 5*factorial(4)
factorial(6) = 6*5*4*3*2*1 = 6*factorial(5)

5

Recursive Definition of factorial(n)

 1 if n = 0
factorial(n) =

 n * factorial(n-1) if n > 0

•  How would we implement this in C++ ?

6

Function Definition: C++ Implementation:

factorial(n) = int factorial(n)
{
 if(n == 0)

 1 if n = 0 return 1;
 else

 n*factorial(n-1) if n > 0 return n*factorial(n-1);
}

7

Understanding Recursion

•  You can think of a recursive function call as if it
 were calling a completely separate function.

•  In fact, the operations that can be performed by
 both functions is the same, but the data input to
 each is different

8

Understanding Recursion (Cont’d.)

int factorialA(int n)
{
 if(n == 0)
 return 1;
 else
 return n*factorialB(n-1);
}

int factorialB(int m)
{
 if(m == 0)
 return 1;
 else
 return m*factorialC(m-1);
}

•  If factorialB() and factorialC() perform the same
 operations as factorialA(), then factorialA() can be used
 in place of them.

9

Example: factorial(3)
factorial(3): n = 3 calls factorial(2)
factorial(2): n = 2 calls factorial(1)
factorial(1): n = 1 calls factorial(0)
factorial(0): returns 1 to factorial(1)
factorial(1): 1*factorial(0) becomes 1*1 = 1

 : returns 1 to factorial(2)
factorial(2): 2*factorial(1) becomes 2*1 = 2

 : returns 2 to factorial(3)
factorial(3): 3*factorial(2) becomes 3*2 = 6

 : returns 6

10

Questions for Constructing Recursive
 Solutions

•  Strategy: Can you define the original problem in
 terms of smaller problem(s) of the same type?
–  Example: factorial(n) = n*factorial(n-1) for n > 0

•  Progress: Does each recursive call diminish the
 size of the problem?

•  Termination: As the problem size diminishes,
 will you eventually reach a “base case” that has
 an easy (or trivial) solution?
–  Example: factorial(0) = 1

11

Example: Slicing Sausage

•  Problem: Slice a sausage from back to front.
(Assume that sausages have distinguishable front and
 back ends.)

•  Solution Strategy: Slicing a sausage into N slices
 from back to front can be decomposed into
 making a single slice at the end (which is “easy”)
 and making the remaining N-1 slices from back to
 front (which is a smaller problem of the “same
 type”).

12

Slicing Sausage (Cont’d)

•  Progress: If we keep reducing the length of the
 sausage to be sliced, we will eventually end up
 with 1 slice left.
–  We could even go a step further and end with a sausage

 of length 0, which requires no slicing.
•  Termination: Since our strategy reduces the size

 of the sausage by 1 slice each step, we will
 eventually reach the base case (0 slices left).

13

Listen up! Here’s the plan ...

1 2 0
Butcher #2 always makes the first slice at the rightmost end. He
 then passes the sausage to butcher #1, who makes the next cut,
 followed by butcher #0. They take turns with the only sausage
 slicer in their shop.

14

Sausage Slicer (in C++)
#define make1slice cout

void sausageSlicer(char sausage[], int size)
{
 if(size > 0)
 {
 // slice the end off
 make1slice << sausage[size-1];
 // slice the rest of the sausage
 sausageSlicer(sausage, size-1);
 }
 // base case: do nothing if size == 0
}

15

Trial Run

•  Suppose char pepperoni[] contains {‘F’, ‘D’, ‘A’}
•  Executing

sausageSlicer(pepperoni, 3);
 results in

sausage

size 3

F D A

16

Trial Run (Cont’d.)
•  Since size = 3 > 0,

make1slice << sausage[size-1];
 will cause sausage[2], containing ‘A’, to be sliced
 off.

•  After this
sausageSlicer(sausage, 2);

 is executed.

17

Trial Run (Cont’d.)
•  Executing

sausageSlicer(sausage, 2);
 causes

make1slice << sausage[size-1];
 to be executed, which results in sausage[1],
 containing ‘D’, to be sliced off.

•  After this
sausageSlicer(sausage, 1);

 is executed.

18

Trial Run (Cont’d.)
•  Executing

sausageSlicer(sausage, 1);
 causes

make1slice << sausage[size-1];
 to be executed, which results in sausage[0],
 containing ‘F’, to be sliced off.

•  After this
sausageSlicer(sausage, 0);

 is executed.

19

Trial Run (Cont’d.)

•  Executing
sausageSlicer(sausage, 0);

 does nothing and returns to the place where it was
 called.

20

Trial Run - Return Path

•  sausageSlicer(sausage, 0) returns to
 sausageSlicer(sausage, 1), which has nothing left to do.

•  sausageSlicer(sausage, 1) returns to
 sausageSlicer(sausage, 2), which has nothing left to do.

•  sausageSlicer(sausage, 2) returns to
 sausageSlicer(sausage, 3), which has nothing left to do.

•  sausageSlicer(sausage, 3) returns to
 sausageSlicer(pepperoni, 3), the original call to
 sausageSlicer(), and execution is done.

21

Trial Run - Key Point

Note that there is only one sausageSlicer, (i.e. one
 recursive function), but it is used over and over on
 successively smaller pieces of the original sausage
 until, finally, the entire sausage is sliced.

22

New Strategy for a New Tool

•  Solution Strategy: Slicing a sausage into N slices
 from back to front can be decomposed into slicing
 N-1 slices from back to front (a smaller problem
 of the same type) and making a single slice at the
 front (which is “easy”).

•  Progress & Termination: Since, as before, our
 strategy reduces the size of the sausage by 1 slice
 each step, we will eventually reach the base case
 (0 slices left).

23

New Tool … New Strategy

1 2 0
This time, someone hands the sausage to butcher #0. As the senior
 member of the team, he will slice only if the others have done their
 work. So, he passes the sausage to butcher #1 who, in turn, passes
 the sausage to butcher #2. Butcher #2 makes the first slice, as
 before, at the rightmost end of the sausage, and then passes it back
 to the other two butchers, who can now complete their tasks.

24

New Sausage Slicer in C++
int size; // global variable containing size of sausage

void sliceAsausage(char sausage[], int pos)
{
 if(pos < size)
 { // cut into slices everything to the right of sausage[pos]
 sliceAsausage(sausage, pos+1);
 // slice off sausage[pos];
 make1slice << sausage[pos];
 }
 // base case: do nothing if pos == size (i.e. past end of sausage)
}

25

Trial Run of New Sausage Slicer

•  Suppose, as before, char pepperoni[] contains
{‘F’, ‘D’, ‘A’} and size is initialized to 3.

•  Executing
sliceAsausage(pepperoni, 0);

 results in
sausage

pos 0

F D A

26

New Slicer Trial Run (Cont’d.)
•  Since pos = 0 < size,

sliceAsausage(sausage, 1);
 will be executed.

•  After this
sliceAsausage(sausage, 2);

 is executed, followed by
sliceAsausage(sausage, 3);

27

New Slicer Trial Run - Return Path

•  sliceAsausage(sausage, 3) does nothing since pos = size.
•  sliceAsausage(sausage, 3) returns to

 sliceAsausage(sausage, 2), which prints sausage[2] = ‘A’.
•  sliceAsausage(sausage, 2) returns to

 sliceAsausage(sausage, 1), which prints sausage[1] = ‘D’.
•  sliceAsausage(sausage, 1) returns to

 sliceAsausage(sausage, 0), which prints sausage[0] = ‘F’.
•  sliceAsausage(sausage, 0) returns to

 sliceAsausage(pepperoni, 0), and execution is done.

28

There’s more than one way to
 slice a sausage!

29

Xn Function

 Xn = 1 if n = 0 (base case)
 Xn = X*X(n-1) if n > 0

This can easily be translated into C++. However, a
 more efficient definition is possible:

 Xn = 1 if n = 0 (base case)
 Xn = [X(n/2)]2 if n > 0 and even
 Xn = X*[X(n-1)/2]2 if n > 0 and odd

30

C++ Implementation of Xn
double power(double X, int n)
{ // Note: Iterative solution is more efficient
 double HalfPower;
 if(n == 0) return 1;
 if(n % 2 == 0) // n is even
 {
 Halfpower = power(X, n/2);
 return HalfPower*HalfPower;
 }

 // n is odd
 Halfpower = power(X, (n-1)/2);
 return X*HalfPower*HalfPower;
}

31

Fibonacci Sequence
The first two terms of the sequence are 1, and each
 succeeding term is the sum of the previous pair.

1 1
1 + 1 = 2
 1 + 2 = 3
 2 + 3 = 5
 3 + 5 = 8
 5 + 8 = 13 . . . , or

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 . . .

32

Fibonacci Sequence (Cont’d.)
Function Definition: C++ Implementation:

int fib(int n)

{

fib(1) = 1 (base case) if(n <= 2)

fib(2) = 1 (base case) return 1;

 else

fib(n) = fib(n-1) + fib(n-2),
 for n > 2

 return fib(n-1) + fib(n-2);
}

• 2 base cases and 2 simpler
problems of the “same
kind”

• Very inefficient: fib(7) will
call fib(3) five times!

33

Fibonacci Sequence with Rabbits

•  Problem posed by Fibonacci in 1202:
– A pair of rabbits 1 month old are too young to

 reproduce.
– Suppose that in their 2nd month and every

 month thereafter they produce a new pair.
–  If each new pair of rabbits does the same, and

 none of them die, how many pairs of rabbits
 will there be at the beginning of each month?

34

Fibonacci Sequence with Rabbits (Cont’d.)

Month 1: # Pairs: 1 Adam & Eve
 2: 1 Adam & Eve
 3: 2 Adam & Eve have twins1
 4: 3 Adam & Eve have twins2
 5: 5 Adam & Eve have twins3;
 twins1 have twins4
 6: 8 Adam & Eve have twins5;
 twins1 have twins6; twins2 have twins7
•  Result: #pairs follows the Fibonacci sequence!

35

Fibonacci Sequence - Other Applications

•  A male bee has only one parent (his mother), while a female
 bee has a father and a mother. The number of ancestors, per
 generation, of a male bee follows the Fibonacci sequence.

•  The number of petals of many flowers are Fibonacci
 numbers.

•  The number of leaves at a given height off the ground of
 many plants are Fibonacci numbers.

36

Mad Scientist’s Problem

A mad scientist wants to make a straight chain of length n out
 of pieces of lead and plutonium. However, the mad scientist
 is no dummy! He knows that if he puts two pieces of
 plutonium next to each other, the whole chain will explode.
 How many safe, linear chains are there?

Example: n = 3
 L L L (safe) P L L (safe)
 L L P (safe) P L P (safe)
 L P L (safe) P P L (unsafe)
 L P P (unsafe) P P P (unsafe)

Result: 5 safe chains

37

Mad Scientist (Cont’d.)

Let C(n) = number of safe chains of length n
 L(n) = number of safe chains of length n ending with lead
 P(n) = number of chains of length n ending with

 plutonium

Now, the total number of safe chains of length n must be the
 sum of those that end with lead and those that end with
 plutonium, namely

 C(n) = L(n) + P(n)

38

Mad Scientist (Cont’d.)

Note that we make a chain of length n by adding to a
 chain of length n-1.

So, consider all chains of length n-1. Note that we
 can add a piece of lead to the end of each of these,
 since this will not make the chain unsafe.

Therefore,
 L(n) = C(n-1)

39

Mad Scientist (Cont’d.)

Consider again all chains of length n-1. Note that we
 can add a piece of plutonium to the end of only the
 chains that end with lead.

Therefore,

 P(n) = L(n-1)

40

Mad Scientist (Cont’d.)
Substituting formulas for L(n) and P(n) in the formula for
 C(n) we see that

C(n) = L(n) + P(n)
 = C(n-1) + L(n-1)
 = C(n-1) + C(n-2), since L(k) = C(k-1) for any k
Note that this is the Fibonacci recursion!
However, the base case(s) are different:
 C(1) = 2 L or P
 C(2) = 3 LL or LP or PL

41

Mad Scientist (Cont’d.)

Back to our example with n = 3:

C(3) = C(2) + C(1)
 = 3 + 2
 = 5

which agrees with the answer we found by
 enumerating all the possibilities.

42

Mr. Spock’s Dilemma

There are n planets in an unexplored planetary
 system, but there is only time (or fuel) for k visits.

How many ways are there for choosing a group of
 planets to visit?

Let C(n, k) denote the number of ways to choose k
 planets from among n candidates.

43

Mr. Spock’s Dilemma: Solution Strategy

Consider planet Vega. Either we visit Vega or we don’t.

•  If we visit Vega, then we will have to choose k-1 other
 planets to visit from the remaining n-1.

•  If we don’t visit Vega, then we will have to choose k other
 planets to visit from the remaining n-1.

•  Therefore,
 C(n, k) = C(n-1, k-1) + C(n-1, k) for 0 < k < n

44

Mr. Spock’s Dilemma: Recursion
 Criteria

Consider the criteria for constructing a recursive solution:

1) Strategy: Is the original problem defined in terms of
 smaller problems of the same type? Yes,
 C(n, k) = C(n-1, k-1) + C(n-1, k)

2) Progress: Does each recursive call diminish the size of
 the problem? Yes, first argument of C decreases with
 each recursive call and second argument does not
 increase.

3) Termination: Will a “base case” be reached eventually?
 Let’s see what base cases are needed, and then see if one
 of them will always be reached.

45

Mr. Spock’s Dilemma: Base Cases

•  Note that the recursion formula
 C(n, k) = C(n-1, k-1) + C(n-1, k)
 only applies when 0 < k < n. Consequently, we need to
 consider k < 0, k = 0, k = n, and k > n.

•  Since there is only 1 way to choose 0 planets and only 1
 way to choose all n planets, we have
 C(n, k) = 1 if k = 0 or k = n

•  Since it is not possible to choose < 0 planets or > n planets,
 C(n, k) = 0 if k < 0 or k > n

46

Base Cases (Cont’d.)
•  Putting this all together, we have

 C(n, k) =
 0 if k < 0 or k > n (base case)
 1 if k = 0 or k = n (base case)
 C(n-1, k-1) + C(n-1, k) if 0 < k < n

•  Consider the recursion formula, where 0 < k < n. Since the
 first argument of C(n, k) decreases with each recursive
 call and second argument does not increase, eventually
 either n = k or k = 0. Both base cases are defined above.
 Therefore, termination is assured.

47

Mr. Spock’s Dilemma: Solution in C++

 int C(int n, int k) // # of ways to choose k of n things
 {
 if(k == 0 || k == n) return 1;

 if(k < 0 || k > n) return 0;

 return C(n-1, k-1) + C(n-1, k);
 }

48

Binary Search: Telephone Book
•  Problem: Search the telephone book for someone’s phone

 number.
•  Binary Search Strategy:
 a) Open the book somewhere near the middle.
 b) If the the person’s name is in the first half, ignore the
 second half, and search the first half, starting again at step
 a).
 c) If the the person’s name is in the second half, ignore the
 first half, and search the second half, starting again at step
 a).
 d) If the person’s name is on a given page, scan the page for
 the person’s name, and find the phone number associated
 with it.

49

Binary Search: Search an Array
•  Problem: Given an array, A[], of n integers, sorted from

 smallest to largest, determine whether value v is in the
 array.

•  Binary Search Strategy:
 If n = 1 then check whether A[0] = v. Done.

 Otherwise, find the midpoint of A[].
 If v > A[midpoint] then recursively search the second half

 of A[].
 If v <= A[midpoint] then recursively search the first half of
 A[].

50

Search an Array: C++ Implementation

int binarySearch(int A[], int v, int first, int last)
{
 if(first > last) return -1; // v not found in A[]

 int mid = (first + last)/2; // set mid to midpoint

 if(v == A[mid]) return mid;
 if(v < A[mid]) return binarySearch(A, v, first, mid-1);
 return binarySearch(A, v, mid+1, last);
}

51

C++ Implementation (Cont’d.)

Two common mistakes:

 1) CORRECT: mid = (first + last)/2;
 INCORRECT: mid = (A[first] + A[last])/2;

 2) CORRECT: return binarySearch(A, v, mid+1, last);
 INCORRECT: return binarySearch(A, v, mid, last);

52

Search an Array: Implementation Notes

•  The whole array, A[], is passed with each call to
 binarySearch().

•  The active part of array A[] is defined by first and
 last.

•  A return value of -1 means that v was not found.

53

Search an Array: Example
•  Suppose int A[] contains {1, 5, 9, 13, 17, 19, 23}, and we

 are interested in searching for 19.
•  Executing binarySearch(A, 19, 0, 6);

 results in
 0 1 2 3 4 5 6
 A 1 5 9 13 17 19 23

first last mid

first mid last (found at mid!)

54

Search an Array: Example (Cont’d.)
•  Suppose we are interested in searching for 21:

1 5 9 13 17 19 23

first last mid

first mid last

first, mid, last

last first (last before first!)

55

Search an Array: Final Comments

•  Suppose that we have an array of a million numbers.
•  The first decision of a binary search will eliminate

 approximately half of them, or 500,000 numbers.
•  The second decision will eliminate another 250,000.
•  Only 20 decisions are needed to determine whether a given

 number is among a sorted list of 1 million numbers!
•  A sequential search might have to examine all of them.
•  Additional Note: Binary searching through a billion

 numbers would require about 30 decisions, and a trillion
 numbers would (theoretically) require only 40 decisions.

