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On Self-adjustment of Social Conventions to Small Perturbations *
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We present a model for self-adjustment of social conventions to small perturbations, and investigate how pertur-

bations can influence the convergence of social convention in different situations. The experimental results show

that the sensitivity of social conventions is determined by not only the perturbations themselves but also the

agent adjustment functions for the perturbations; and social conventions are more sensitive to the outlier agent

number than to the strategy fluctuation magnitudes and localities of perturbations.
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In a multi-agent system with social
conventions,[1−7] there may be some outliers who oc-
casionally violate the conventions; and perturbations
are thus brought out. In some cases, the perturbations
are easy to remedy; but in other cases, the perturba-
tions will influence the fundamental characteristics of
system, and may have large, unpredictable effects.[8]

In this Letter, we provide a new concept: the sen-
sitivity of social conventions to small perturbations.
If a small perturbation may be remedied well in a lim-
ited scope and quickly, we can say that the sensitivity
of social conventions to such perturbation is low; but
in other cases, the small perturbation may pervade
over the whole system, and even brings out the emer-
gence of a new convention; then we can say that the
sensitivity of social conventions to such perturbation
is high.

Definition 1. Let 𝑛 be the number of agents,
the multi-agent coordination is a tuple ⟨𝐴, 𝑆, 𝑈⟩
, where 𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑛} is a set of agents,
𝑆 = {𝑆1, 𝑆2, · · · , 𝑆𝑛}, and 𝑆𝑖 denotes the set of social
strategies available to agent 𝑎𝑖, 𝑈 : 𝑆1×𝑆2×· · ·×𝑆𝑛 →
R is the global utility function of the multi-agent sys-
tem.

Definition 2. Given the multi-agent coordina-
tion ⟨𝐴, 𝑆, 𝑈⟩, a social law is the restriction of 𝑆1 to
𝑆*1 ⊆ 𝑆1, 𝑆2 to 𝑆*2 ⊆ 𝑆2 · · ·𝑆𝑛 to 𝑆*𝑛 ⊆ 𝑆𝑛, so as to
∀𝑆𝑖, 𝑈(𝑆*1 , 𝑆*2 , · · · , 𝑆*𝑛) ≥ 𝑈(𝑆1S*1, 𝑆2 𝑆*2 , · · · , 𝑆𝑛 𝑆*𝑛).

Definition 3. According to Ref. [3], a social law
that restricts agents’ behaviour to one particular
strategy is called a social convention; therefore, we
can also simply use such particular strategy to repre-
sent the social convention.

Definition 4. Referring to Ref. [2], now we for-
malize our notion of convention convergence in multi-
agent systems. Let 𝑆 be the set of all strategies in the
system, we denote by likeness (𝜎, 𝜀) the set of agents

that choose any strategies in strategy set 𝑆′, which
satisfies the following situation:

(𝑆′ ⊆ 𝑆) ∧ (∀𝑠 ∈ 𝑆′ ⇒ 𝑊 (𝑠, 𝜎) ≤ 𝜀), (1)

where 𝑊 (𝑠, 𝜎) denotes the difference between strat-
egy 𝑠 and 𝜎, 𝜀 denotes a predefined tolerance value.
Obviously, the strategy of social convention 𝑐 should
satisfy

𝑐 = arg max
𝜎∈𝑆

⃒⃒
likeness(𝜎, 𝜀)

⃒⃒
, (2)

where |likeness(𝜎, 𝜀)| denotes the number of agents in
likeness(𝜎, 𝜀). The convergence of convention 𝑐 is de-
fined as

𝑐𝑜𝑛𝑣(𝑐, 𝜀) =
|likeness(𝑐, 𝜀)|

|𝐴|
, (3)

where |𝐴| denotes the number of agents in the whole
system.

Definition 5. A perturbation is the change of
an agent or some agents’ strategies which are devi-
ated from or against the current social convention;
those agents that initially produce the perturbation
are called the outlier agents.

Definition 6. Let conv(𝑐, 𝜀) be the convergence of
social convention 𝑐 before perturbation Θ take places,
𝑐𝑜𝑛𝑣′(𝑐, 𝜀) be the one after Θ take places, then our
measure of ‘sensitivity of social convention 𝑐 to per-
turbation Θ’ is

Ψ𝑐(Θ) = 1− 𝑐𝑜𝑛𝑣′(𝑐, 𝜀)
𝑐𝑜𝑛𝑣(𝑐, 𝜀)

. (4)

Local diffusion effects of perturbations. In real-
ity, each agent interacts always with a small set of
local ‘neighbours’, and individuals will adjust their be-
haviour over time by myopically acclimatizing them-
selves to their local neighbours.[9−11] Such a process
will continue until the impact of the perturbation is
decayed or spreads over the whole system.

Figure 1(a) is an example for the diffusion of
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agent perturbation. If the strategy of agent 𝑎 violates
the convention, then the agents within the local re-
gion {𝑏, 𝑐, 𝑑} will adjust their strategies to acclimatize
themselves to agent 𝑎. If the strategy of 𝑏 is changed,
the agents within the local region {𝑐, 𝑑, 𝑒} may be in-
fluenced. However, the strategies of agents 𝑐 and 𝑑
have already been adjusted before, then, how can we
deal with it? Now we give a presumption as follows:

Presumption 1. If an agent’s strategy is adjusted
in a perturbation diffusion process, such adjustment
will keep to be fixed during the whole process of that
perturbation.

Therefore, when the strategy of 𝑏 is changed, the
strategies of 𝑐 and 𝑑 keep to be fixed, and the strategy
of 𝑒 will be adjusted. If the strategy of 𝑒 is changed,
the strategies of 𝑏 and 𝑐 keep to be fixed, and the
strategy of 𝑓 will be adjusted. The diffusion process
of the perturbation brought by 𝑎 can be denoted by a
directed graph, called the diffusion topology, as shown
in Fig. 1(b).
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Fig. 1. An example of the perturbation diffusion process.
Let the distance of each lattice be 1 and the local inter-
action radius be

√
2. (a) Diffusion process with agent 𝑎

being the source of perturbation. (b) Diffusion topology.

Algorithm for the diffusion process of perturba-
tions. Let the set of agents be A, the set of agents
that originally produce the perturbation be 𝐴′, the
diffusion process of perturbation can be explained as
algorithm 1, i.e. (1) set the tags for all agents in 𝐴 to
−1 initially; (2) set the tags for all agents in 𝐴′ to 1;
(3) create queue (𝑄); (4) for ∀ 𝑎 ∈ 𝐴′, insert (𝑄, 𝑎),
(5) while (not empty (𝑄)) do: (5.1) 𝑎 = out Queue
(𝑄); (5.2) for ∀ 𝑏 ∈ 𝐿𝑎: if the tag of agent 𝑏 is −1,
then: (5.2.1) adjust the strategy of agent 𝑏 according
to 𝑏’s strategy adjustment function; (5.2.2) set the tag
of 𝑏 to 1; (5.2.3) if the strategy of 𝑏 is changed, then:
(5.2.3.1) insert(𝑄, 𝑏); (6) end.

While the strategy of an agent is changed, its local
neighbours should adjust their strategies to avoid col-
lision, which is called minimum local conflicts.[12−14]

Now, based on such a rule, we design four adjustment
functions for the perturbations to reduce the conflicts.
In the following sections, 𝐿𝑖 denotes the local region
of agent 𝑖.

(A) Simple Inclination to the Supreme Agent in
Local Region.

Definition 8. Social ranking of agent 𝑖 can be a
function 𝑝𝑖 → [0, 𝛿], where 𝛿 is a natural number. If
𝑝𝑖 > 𝑝𝑗 , then the social rank of agent 𝑖 is superior to
the one of 𝑗.

Now we design the strategy adjustment criterion
of the simple inclination to the supreme agent in local
region as follows.

𝑗 = arg max
𝑚∈(𝐿𝑖∪{𝑖})

𝑝𝑚, 𝑠𝑖(𝑡 + 1) = 𝑠𝑗(𝑡), (5)

where 𝑗 denotes the supreme agent in the local region
of agent 𝑖, 𝑠𝑗(𝑡) denotes the social strategy of agent 𝑗
at time 𝑡.

(B) Simple Majority in Local Region.
A strategy becomes more dominant as the num-

ber of adopters increases. Therefore, each agent will
change to an alternative strategy if it observes more
adopters of such strategy in the local region.[8] The
agents that share the same social strategy are called
the overlay group of the strategy. Let 𝐺(𝑠) represents
the overlay group of social strategy 𝑠, we have

𝐺(𝑠) = {𝑢|agent 𝑢 adopts the social strategy 𝑠}.

Therefore, we can design the strategy adjustment cri-
terion as follows:

𝑠* = arg max
𝑠∈

⋃︀
𝑗∈(𝐿𝑖∪{𝑖})

{𝑠𝑗(𝑡)}

⃒⃒
𝐺(𝑠) ∩ ({𝑖} ∪ 𝐿𝑖)

⃒⃒
,

𝑠𝑖(𝑡 + 1) = 𝑠*, (6)

where 𝑠* denotes the social strategy adopted by the
majority in the local region of agent 𝑖.

(C) Simple Average in Local Region.
When many agents operate concurrently in the

agent system, the agents will incline to adopt an iden-
tical average social strategy which can make the sys-
tem more unified. Therefore, we design the strategy
adjustment criterion of simple average in local region
as follows:

𝑠𝑖(𝑡 + 1) = average
(𝑗∈𝐿𝑖∪{𝑖})

(𝑠𝑗(𝑡)). (7)

(D) Local Weighted Convergence Inclination.
The impact force from an agent in the local region

to agent 𝑖 is determined both by such agent’s rank
and its distance to agent 𝑖. Obviously, agent 𝑖 will
also influence itself. Therefore, we define the collec-
tive impact force on agent 𝑖 by itself and other agents
in its local region as

𝐼𝐹 =
∑︁
𝑗∈𝐿𝑖

𝑝𝑗/𝑝𝑖

𝑑𝑖𝑗
+ 𝜏, (8)

where the first part on the left of the equation denotes
the impact force of other agents within the local re-
gion to agent 𝑖, 𝜏 denotes the impact force of agent 𝑖
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to itself.
Therefore, we can design the strategy adjustment

criterion of local weighted convergence inclination as
follows:

𝑠𝑖(𝑡 + 1) =
∑︁
𝑗∈𝐿𝑖

[︂
(𝑝𝑗/𝑝𝑖)/𝑑𝑖𝑗

𝐼𝐹
· 𝑠𝑗(𝑡)

]︂
+

𝜏

𝐼𝐹
· 𝑠𝑖(𝑡). (9)

(A) Case Study and Experimental Environment.
Now we use the case of a multiagent system that

simulates a crowd of strangers standing on a play-
ground. In our case, the social strategy of an agent is
its direction. Let 𝑛 be the number of agents, we can
use an array to denote the social strategies of agents.
Here 𝑠𝑖 → {1, · · · , 8}, 1 ≤ 𝑖 ≤ 𝑛, represents social
strategy (i.e., the standing direction) of agent 𝑖.

Agent b

Agent c

Agent d

Agent e

a b c d e 

1 4 8 4 2

Agent

Social strategy 

2 

3

46 

7 

8 

Agent a  
1 

5 

Local region of agent c 
 

(a) (b)

(c)

Fig. 2. The case of an agent system and its social strate-
gies.

Fig. 3. Test results for varying numbers of outlier agents.

Local region in our case: let the position of agent
𝑖 be (𝑥𝑖, 𝑦𝑖) and the distance of each lattice be 1 in
our case, then the local interaction diffusion group of
agent 𝑖 is composed of the agents that locate on the
place of (𝑥, 𝑦) which satisfies

𝐿𝑖 = {𝑗|𝑑(𝑖, 𝑗) ≤
√

2}, (𝑥𝑖 − 1) ≤ 𝑥 ≤ (𝑥𝑖 + 1),

(𝑦𝑖 − 1) ≤ 𝑦 ≤ (𝑦𝑖 + 1). (10)

Here we assume that there already exists a social
convention in the system, i.e., most or all the agents

have already adopted a particular strategy (standing
with the same direction). Now if one or some agents
change their standing directions randomly, we will test
how the perturbation will influence the convergence of
the existing social convention in varying perturbations
as well as different adjustment functions.

(B) Test Results and Analyses.
(1) Varying outlier agent numbers in perturbation.

The results are seen in Fig. 3. If the number of out-
lier agents increases, the convergence of the existing
convention will decrease accordingly. Therefore, the
sensitivity of social convention to perturbation varies
directly as the number of outlier agents in the pertur-
bation.

(2) Varying strategy fluctuation magnitudes in
perturbation. First, we change the strategies of the
outlier agents for a little, and then we will increase
the fluctuation magnitudes of outlier agent strategies
step by step. The results are seen in Fig. 4. The results
are illustrated in Fig. 4. The fluctuation magnitudes
of outlier agent strategies have not obvious effects on
the sensitivity of convention to the perturbations.

Fig. 4. Test results for varying strategy fluctuation mag-
nitudes of outlier agents.

Fig. 5. Test results for varying outlier agent localities in
perturbations.

(3) Varying outlier agent localities in perturba-
tions. To consider the varying outlier agent localities
in perturbations, we can use the average distance be-
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tween outlier agents and the centre of the grid (which
is denotes as 𝑑𝐴𝐶). First we can set the outlier agents
to locate the outer space of the grid, then we reduce
𝑑𝐴𝐶 step by step for several cases. The results are
illustrated in Fig. 5, where the 𝑥-axis denotes the list
of varying 𝑑𝐴𝐶 in decreasing order. Here the outlier
agent localities have not obvious effects on the sensi-
tivity of social convention to the perturbations.

Table 1. Test results for varying situations of multiagent sys-
tems. |𝐴| denotes the number of agents in the system, 𝑎 for
the perturbation proportion of 20%, 𝑏 for the perturbation pro-
portion of 50%. (I) Simple inclination to the supreme agents,
(II) simple majority, (III) local weighted convergence inclination,
(IV) simple average.

|𝐴| 100 225 400 625 900 1225 1600

I
𝑎 0.450 0.471 0.405 0.426 0.426 0.413 0.413

𝑏 0.710 0.671 0.733 0.664 0.738 0.656 0.723

II
𝑎 0.360 0.396 0.408 0.382 0.378 0.376 0.378

𝑏 0.580 0.597 0.600 0.610 0.613 0.605 0.608

III
𝑎 0.220 0.280 0.265 0.245 0.261 0.277 0.260

𝑏 0.590 0.551 0.540 0.536 0.540 0.537 0.545

IV
𝑎 0.230 0.244 0.235 0.237 0.246 0.248 0.243

𝑏 0.530 0.551 0.520 0.534 0.528 0.527 0.545

|𝐴| 2025 2500 3025 3600 4900 6400 10000

II
a 0.426 0.422 0.425 0.417 0.411 0.416 0.418

𝑏 0.663 0.727 0.667 0.727 0.736 0.726 0.726

II
𝑎 0.394 0.384 0.388 0.382 0.379 0.390 0.379

𝑏 0.603 0.609 0.604 0.615 0.603 0.609 0.610

III
𝑎 0.253 0.258 0.256 0.261 0.260 0.260 0.261

𝑏 0.540 0.558 0.541 0.554 0.554 0.551 0.554

IV
𝑎 0.245 0.239 0.248 0.243 0.247 0.247 0.245

𝑏 0.522 0.531 0.527 0.540 0.537 0.536 0.536

(4) Varying situations of multiagent systems. Here
we consider the varying situations of multiagent sys-
tems, which include varying scales and distribution.
In each test, we adopt two kinds of perturbation pro-
portions (i.e. the proportion of outlier agents in the
whole system), one is 20%, and the other is 50%.
Now we increase the numbers of the whole multia-
gents step by step for varying cases, and in each case
the agents are distributed randomly. The results are
seen in Table 1. Here the number of the whole agents
has not obvious effects on the sensitivity of convention
to the perturbations; but the perturbation proportion
has obvious effects on the sensitivity of convention
to the perturbations. For the sensitivities, the four
agent strategy adjustment functions can be listed in

descending order: simple inclination to the supreme
agent, simple majority, local weighted convergence in-
clination, simple average.

(6) Analyses and summary for the experimental
results. The convention is more sensitive to the out-
lier agent number than to the outlier agent localities
and strategy fluctuation magnitudes of the perturba-
tion; the potential reason is: our strategy adjustment
functions are all locally controlled, thus the perturba-
tion always takes effects locally and each outlier agent
always influences other agents locally. If we want to
remedy the perturbation as locally as possible, the
adjustment function of simple average in local region
can remedy the perturbations better than other three
adjustment functions, since it can get the unification
easily.
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