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Decision Making of Networked Multiagent
Systems for Interaction Structures

Yichuan Jiang, Member, IEEE, Jing Hu, and Donghui Lin

Abstract—Networked multiagent systems are very popular in
large-scale application environments. In networked multiagent
systems, the interaction structures can be shaped into the form of
networks where each agent occupies a position that is determined
by such agent’s relations with others. To avoid collisions between
agents, the decision of each agent’s strategies should match its
own interaction position, so that the strategies available to all
agents are in line with their interaction structures. Therefore,
this paper presents a novel decision-making model for networked
multiagent strategies based on their interaction structures, where
the set of strategies for an agent is conditionally decided by other
agents within its dependence interaction substructure. With the
presented model, the resulting strategies available to all agents
can minimize the collisions of multiagents regarding their inter-
action structures, and the model can produce the same resulting
strategies for the isomorphic interaction structures. Furthermore,
this paper uses a multiagent citation network as a case study to
demonstrate the effectiveness of the presented decision-making
model.

Index Terms—Citation networks, decision making, multiagents,
networked interaction structures, social network analyses.

I. INTRODUCTION

S TRATEGY is the action that an agent adopts to behave
in multiagent systems [1]; for example, an agent can

select the strategy of cooperation or defect in the Prisoner’s
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Dilemma game. When agents are uncertain about the precise
results of adopting such strategies, they will take decision
making as a means to analyze which of a series of strategies
should be taken [2], [34]. Previous works on decision making
always use game theory or other economics techniques, such as
negotiation, bargaining, auction, and contracting, and mainly
concern negotiation protocols and decision-making procedures
[3], [4], [34].

Nowadays, with the development of large-scale multiagent
systems, agents are always organized in networked structures
where an agent interacts only with its immediate neighbors
[5]–[7]. The interactions among agents can be shaped in the
form of networks in which the vertices denote the agents and
the edges indicate their interaction relations. According to the
social-network-analysis method, each agent occupies a position
against other agents in the interaction structure [8]; such posi-
tion can only be shaped and described by the agent’s relations
with other agents, but not by its own inherent attributes. The
interaction position of an agent is very important to determining
its role in the system [9]; for example, in a multiagent system
simulating corporation organization, the action strategies of a
manager agent should be different from those of a staffer agent.
If the staffer agent adopts the manager agent’s strategies, some
disorders may result. Therefore, agents should adopt the strate-
gies that match their positions in the interaction structures to
avoid colliding with other agents. Making decisions according
to the interaction structure is a crucial problem in solving agent
coordination within networked multiagent systems.

Distributed decision making for the coordination of net-
worked agents has received much attention in recent years.
Saber and Murray [10] provide convergence, performance, and
robustness analyses of an agreement protocol for a network of
integrator agents with directed information flow and switching
topology, which mainly rely on the tools of algebraic graph
theory and matrix theory. Roy et al. [11] introduce a quasi-
linear stochastic distributed protocol that can be used by a net-
work of sensing agents to reach a collective action agreement.
Generally, previous works on the decision making of networked
agents mainly concerned the agreement problems in which
all agents within the network must achieve the same opinion,
and the connection between the networked topology and the
performance of the agreement protocol. Therefore, previous
works seldom took into account the interaction structures of
agents while they decide the agents’ action strategies.

In addressing the aforementioned issues, this paper takes
both the agent’s interaction position and the strategies into ac-
count and presents a model for deciding the strategies available
to agents that can satisfy the constraints created by interaction
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structures. In our decision-making model, we focus upon the
multiagent dependence relations that are always seen where
the strategies of some agents are dependent on others [12].
Dependence relations occur in multiagent systems due to
many reasons, such as resource constraints, environmental con-
straints, task allocations, etc. Clearly, the strategies available to
an agent should be conditionally determined by its dependent
agents within the interaction structure.

In this paper, the main purpose of decision making is to put
restrictions on agent strategies that can match the interaction
positions of all agents within the interaction structure. With
our approach, the decision-making result can minimize the
collisions between agents regarding their interaction positions.

The rest of this paper is organized as follows. In Section II,
we model the interaction structures of networked multiagents;
in Section III, we present the decision-making model for inter-
action structures; in Section IV, we highlight a case study of
decision-making in multiagent citation networks; in Section V,
we introduce related work; and finally, we conclude this paper
in Section VI.

II. MODELING THE INTERACTION STRUCTURES IN

NETWORKED MULTIAGENT SYSTEMS

A. Interaction Structures

An interaction structure consists of the interaction relations
between agents. In this paper, we summarize the interaction
relations to be in two forms: 1) the dependence relations,
which denote that some agents are reliant on other ones; and
2) the domination relations, which denote that some agents can
overpower others. For an agent, the “in” interaction relations
denote its dependence on other agents and the “out” interaction
relations refer to its domination over other agents.

Generally, the interaction structure among agents can be
understood in a networked form in which the vertices denote
the agents and the edges symbolize their interaction relations.
According to the network analysis method [8], each agent has
its position against other agents in the interaction network.
Clearly, such a position can only be shaped and described by
the agent’s relations with other agents, but not by the inherent
attributes of an individual agent.

Definition 1: The interaction position of an agent is defined
as the set of interaction relations of various types linking this
agent with other agents. Let the agent interaction structure
be N = 〈A,R〉, where A denotes the set of agents and R
represents the set of agent interaction relations. The position of
an agent ai is the union of its immediate in interaction relations
and immediate out interaction relations

Pai
= {〈ai, aj〉|aj ∈ A ∧ 〈ai, aj〉 ∈ R}

∪ {〈aj , ai〉|aj ∈ A ∧ 〈aj , ai〉 ∈ R} . (1)

Example 1: Fig. 1 shows an agent interaction structure and
the positions of agents a, c, e, f, h, and k.

If agent a is the source of an interaction relation r ∈ R, then
we can refer to it as a� r. If agent a is the destination of an
interaction relation r ∈ R, then we can denote it as a⊗ r.

Fig. 1. Example of multiagent interaction structure and agent interaction
positions.

Definition 2: The dependence substructure of an agent in the
interaction structure is defined as the set of in interaction rela-
tions of various types linking this agent with other agents. Let
the agent interaction structure be N = 〈A,R〉, where A denotes
the set of agents and R denotes the set of agent interaction
relations. Then, the first-order dependence substructure of an
agent, namely, ai ∈ A, is the union of its immediate in links

Depai
= {〈aj , ai〉|aj ∈ A ∧ 〈aj , ai〉 ∈ R} . (2)

Obviously, the second-order dependence substructure of ai can
be defined as

Dep (Depai
) = {〈ak, aj〉|aj ∈ A ∧ ak ∈ A

∧〈aj , ai〉 ∈ R ∧ 〈ak, aj〉 ∈ R} . (3)

Therefore, the nth-order dependence substructure of ai can be
defined as

∏
n

Depai
=

n︷ ︸︸ ︷
Dep (Dep (· · · (Depai

) · · ·))

= {〈an, an−1〉|a1 ∈ A ∧ a2 ∈ A ∧ · · ·
∧ an ∈ A ∧ 〈an, an−1〉 ∈ R ∧ · · ·
∧〈a2, a1〉 ∈ R ∧ 〈a1, ai〉 ∈ R} . (4)

The set of agents within the first-order dependence substructure
of ai (called its first-order dependence agents) is

�ai
= {aj |aj ∈ A ∧ 〈aj , ai〉 ∈ Depai

}
= {aj |aj � r ∧ r ∈ Depai

} . (5)

Therefore, the set of all agents within the all-orders dependence
substructures of agent ai is

∑
�ai

=
⋃
k

{
aj |aj � r ∧ r ∈

∏
k

Depai

}
. (6)

On the other hand, an agent may also influence other agents’
strategies for actions within the interaction structure, so we have
the following definition.

Definition 3: The domination substructure of an agent in the
interaction structure is defined as the set of out interaction rela-
tions of various types linking this agent with other agents. Let
the agent interaction structure be N = 〈A,R〉, where A denotes
the set of agents and R denotes the set of agent interaction
relations. Then, the first-order domination substructure of an
agent, namely, ai ∈ A, is the union of its immediate out links

Domai
= {〈ai, aj〉|aj ∈ A ∧ 〈ai, aj〉 ∈ R} . (7)
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Fig. 2. Dependence and domination substructures of agent d.

Obviously, the second-order domination substructure of ai can
be defined as

Dom (Domai
) = {〈aj , ak〉|aj ∈ A ∧ ak ∈ A

∧〈ai, aj〉 ∈ R ∧ 〈aj , ak〉 ∈ R} . (8)

Therefore, the nth-order domination substructure of ai can be
defined as

∏
n

Domai
=

n︷ ︸︸ ︷
Dom (Dom (· · · (Domai

) · · ·))

= {〈an−1, an〉|a1 ∈ A ∧ a2∈A ∧ · · ·
∧ an∈A ∧ 〈ai, a1〉∈R ∧ 〈a1, a2〉 ∈ R ∧ · · ·
∧〈an−1, an〉∈R} . (9)

The set of agents within the first-order domination substructure
of ai (called its first-order domination agents) is

Ωai
= {aj |aj ∈ A ∧ 〈ai, aj〉 ∈ Domai

}
= {aj |aj ⊗ r ∧ r ∈ Domai

} . (10)

Therefore, the set of all agents within the all-orders domination
substructures of agent ai is

∑
Ωai

=
⋃
k

{
aj |aj ⊗ r ∧ r ∈

∏
k

Domai

}
. (11)

Example 2: Now, we consider the dependence and domina-
tion substructures of agent d in Fig. 1, as shown in Fig. 2

Depd = {〈a, d〉, 〈c, d〉}
∏
2

Depd = {〈b, a〉, 〈b, c〉}

�d = {a, c}
∑

�d = {a, c, b} Domd = {〈d, e〉}∏
2

Domd = {〈e, j〉}
∏
3

Domd = {〈j, h〉, 〈j, i〉, 〈j, k〉}

∏
4

Domd = {〈i, k〉} Ωd = {e},
∑

Ωai
= {e, j, h, i, k}.

Lemma 1: Let an agent interaction structure be N = 〈A,R〉.
If N is a directed acyclic graph (DAG), we have ∀a, b ∈ A,
a ∈

∑
Ωb ⇒ a 
∈

∑
�b and a ∈

∑
�b ⇒ a 
∈

∑
Ωb.

Proof:

1) If ∃a, b ∈ A ⇒ a ∈
∑

Ωb ∧ a ∈
∑

�b, a ∈
∑

Ωb de-
notes that there is a path from b to a and a ∈

∑
�b

denotes that there is a path from a to b; therefore, there
is a cycle which contains a and b.

2) If ∃a, b ∈ A ⇒ a ∈
∑

�b ∧ a ∈
∑

Ωb, a ∈
∑

�b de-
notes that there is a path from a to b and a ∈

∑
Ωb

denotes that there is a path from b to a; hence, there is
a cycle that contains a and b.

Obviously, those situations are impossible in a DAG; there-
fore, we have Lemma 1. �

If two agents have identical ties to and from all other agents
in the interaction structure, we can say that they are structurally
equivalent.

Definition 4: Interaction structural equivalence[8]. Let the
agent interaction structure be N = 〈A,R〉, where A denotes the
set of agents and R denotes the set of agent interaction relations;
|A| = m, |R| = n, ai, aj ∈ A, and 1 ≤ i, j ≤ m. Then, ai and
aj are structurally equivalent if for all agents ak ∈ A, k =
1, . . . ,m and k 
= i, j, and all interaction relations rx, x =
1, . . . , n, ai has an interaction relation to ak, if and only if aj
also has an interaction relation to ak, and ai has an interaction
relation from ak, if and only if aj also has an interaction relation
from ak. If ai and aj are structurally equivalent, we can denote
them as ai ≡ aj .

Lemma 2: If two agents are structurally equivalent, then they
have the same first-order dependence and domination agents,
i.e., (ai ≡ aj) ⇒ (�ai

= �aj
) ∧ (Ωai

= Ωaj
). Moreover, they

also have the same nth-order (n > 1) dependence and domina-
tion agents.

Proof: From Definition 4, if two agents are structurally
equivalent, they have the same first-order dependence agents
and first-order domination agents. According to (4) and (9), the
nth-order (n > 1) dependence substructure is fully dependent
on the (n− 1)th-order dependence agents and the nth-order
(n > 1) domination substructure is fully controlled by the
(n− 1)th-order dependence agents. Therefore, the two agents
have the same nth-order (n > 1) dependence and domination
agents. �

Example 3: From Fig. 1, the agent sets that have immedi-
ate in interaction relations to a and c are the same, namely,
{b}, and the agent sets that have immediate out interaction
relations from a and c are also the same: {d, e}. There-
fore, agents a and c are structurally equivalent. Moreover, h
and k are also structurally equivalent. Obviously, �a = �c =
{b}, Ωa = Ωc = {d, e}, �h = �k = {i, j}, Ωh = Ωk = { },∑

�a =
∑

�c = {b},
∑

Ωa =
∑

Ωc = {d, e, j, h, i, k}, and∑
�h =

∑
�k = {i, j, g, e, a, c, d, b, f}; therefore, Lemma 2

is validated.
Definition 5: If agent a is not in the all-orders dependence

and domination structures of agent b, i.e., (a 
∈
∑

�b) ∧ (a 
∈∑
Ωb) is true, then we can think that agent a is independent

from agent b, which can be denoted as a/� b. Obviously, we have
∀a, b ∈ A, a/� b ⇒ b/� a.

Lemma 3: Let an agent interaction structure be N = 〈A,R〉;
if N is a DAG, we have ∀a, b ∈ A, a ≡ b ⇒ a/� b.

Proof: Let ∃a, b ∈ A, a ≡ b. If ¬(a/� b) is true, then (a ∈∑
Ωb) ∨ (b ∈

∑
Ωa) is true. Now, a ≡ b; hence, (

∑
�a =∑

�b) ∧ (
∑

Ωa =
∑

Ωb) is true, which denotes that (a ∈∑
Ωa) ∨ (b ∈

∑
Ωb) is true. Such situation is impossible in a

DAG. Therefore, we have Lemma 3. �
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B. Constraints Among Agents’ Strategies in the
Interaction Structures

When agents interact with and depend on each other, there
may be some constraints which limit their available strategies
for avoiding collisions. For example, if there are two paths
between places x and y and each path can only be passed by
one agent at the same time, agent a1 will go from x to y and
agent a2 will go from y to x. Moreover, a1 has the priority to
select the path first (i.e., the decision of strategy of a2 depends
on the strategy of a1). Thus, we can set the constraint to a2 as
“a2 cannot select the same path as a1”.

Definition 6: Social constraint. Let there be, first, a finite
set of agents, A = {a1, a2, . . . , an}, and second, an initial set
of strategies for each agent, containing a finite and discrete
strategies’ domain for each agent, S = {S1, S2, . . . , Sn}∀i ∈
[1, n] and sij ∈ Si, where sij is the jth strategy that agent
ai adopts in the operation. Then, a social constraint set is
C = {C(A1), C(A2), . . . , C(Am)}, where each Ai is a subset
of the agents and each social constraint C(Ai) is a set of tuples
indicating the mutually consistent strategy values of the agents
in Ai.

In reality, the social constraint with the arity of 2 is always
seen and is the basic form of most constraints. Thus, we mainly
consider such constraint form in this paper.

Definition 7: A binary social constraint is the one that only
affects two agents. If there is a binary social constraint cij
occurring from agent ai to aj , i.e., the constraint is only
endowed on aj by ai, we can say that such a constraint is
unilateral. Now, agent ai is referred to as the subject one of
cij and aj is called the object one of cij .

Therefore, if a social constraint is unilateral, we think that
the strategies of the object agent will be influenced by the
subject agent, but the strategies of the subject agent will not
be influenced by the object agent. Obviously, the dependence
relation between two agents can be considered as a unilateral
binary social constraint between them; thus, we can use the
unilateral binary social constraint between two agents to denote
the interaction relation between them. Let there be two agents,
ai and aj ; if aj depends on ai, then the available strategies of
aj are constrained by ai.

In real systems, some social constraints can be satisfied, but
others can never be satisfied; accordingly, some dependence re-
lations can be fulfilled, but some other ones cannot be satisfied
in the interaction structure. Therefore, we have the following
definition.

Definition 8: Lawful and unlawful dependence relations. Let
there be a dependence constraint cij occurring from agents
ai to aj . The sets of strategies for ai and aj are Si and Sj ,
respectively. If ∀sj ∈ Sj , there exists a strategy in Si, i.e., ∃si ∈
Si, that satisfies cij , we can say that cij is lawful. Otherwise, we
say that cij is unlawful. If Sj is empty, we can also say that this
dependence relation is unlawful.

If an agent is restricted by more constraints, then its behavior
freedom will be more limited.

Definition 9: Freedom degree of agent. For an agent aj , let
the initial set of strategies for aj while it is not constrained
by any dependence relations be S; now, if aj is constrained

by the set of dependence relations ∪icij , then S ′ is the set of
strategies of aj that take into account the dependence relations
∪icij . Therefore, the freedom degree of agent aj under the
dependence relations ∪icij is

fj = |S ′|/|S|. (12)

If S ′ is empty, we say that the freedom degree of aj is 0.

III. DECISION-MAKING MODEL FOR MULTIAGENT

INTERACTION STRUCTURES

On the basis of our previous work on the social law extracting
model in networked multiagent systems [31], here, we present
a decision-making model for multiagent interaction structures.

A. Some Concepts

The conditional dependence assumption provides a practical
way to construct the joint distribution among agents [13]. As
stated in Section II, the strategies of some agents are condition-
ally determined by their dependence agents.

Definition 10: Conditional strategy. An interaction structure
〈A,R〉 is given, where the first-order dependence structure of
agent a ∈ A is Depa and the set of strategies available to the
agents of Depa is ∪i∈�a

Si. Therefore, the set of strategies
available to a is the one given that the agents of its dependence
substructure adopt the strategies ∪i∈�a

Si; this can be referred
to as the conditional strategy Sa|�a

.
The different constraints of dependence relations may pro-

duce collisions among themselves. To achieve the global har-
mony of the system, we should implement decision making to
restrict the agents’ strategies so as to minimize the conflicts
among agents (the definition of decision making in this paper is
a little similar to the concept of social law in [14] and [15]).

Definition 11: Decision of multiagent strategies. An en-
vironment 〈A,S1, S2, . . . , Sn〉 is given, where A is the set
of agents, A = {a1, a2, . . . , an}, and Si is the initial set of
strategies for ai. We define a decision of multiagent strategies
to be a restriction of S1 to S∗

1 ⊆ S1, S2 to S∗
2 ⊆ S2, . . . , Sn to

S∗
n ⊆ Sn, which can minimize conflicts among agents.
Definition 12: Useful decision of multiagent strategies. Let

the total constraints of dependence relations in the system be
C; a decision SL = 〈S∗

1, S
∗
2, . . . , S

∗
n〉 is completely useful if

for every constraint of dependence relation, ∀cij ∈ C, there
exists si ∈ S∗

i such that ∀sj ∈ S∗
j , we have 〈si, sj〉 satisfying

cij . Therefore, in a completely useful decision, all dependence
relations are lawful.

However, in real multiagent systems, sometimes, a decision
may only satisfy the requirements of some but not all depen-
dence relations, i.e., a decision may be only approximately
useful. Then, how could one evaluate the usefulness of a
decision for the interaction structure? We can use the following
definition.

Definition 13: Usefulness degree of a decision. Let the set of
constraints of dependence relations that can be satisfied by the
decision SL be Csat, and if the total constraints of dependence
relations in the system is C, then at first, we can simply define
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Fig. 3. Example for strategy constraints and decision making.

the usefulness degree of a decision SL as |Csat|/|C|. Moreover,
a decision should enable the agents to have more total freedom
under the condition that social constraints can be satisfied.
Thus, we can extend the definition as

USL = α

((
n∑

i=1

fi

)
/n

)
+ β (|Csat|/|C|) (13)

where α and β are parameters to define the relative importance
of agent freedom degree and dependence constraint satisfaction
degree, respectively. We can set the values of the parameters
according to real situations. Therefore, our aim of decision
making is to explore the decision with the maximum degree
of usefulness.

Example 4: Fig. 3 is an example of the decided multi-
agent strategies with different usefulness degrees. Fig. 3(a)
is an interaction structure where there are four agents
{a1, a2, a3, a4} and four social constraints taken by the depen-
dence relations {c12 : s1 > s2, c24 : (s2 − 2) > s4, c13 : (s1 −
5) > s3, c43 : s4 > s3}. In such a system, it is assumed that
the agents can take actions of adopting values in the set S =
{1, 2, . . . , 10}; hence, the strategies are the values in S. The
initial strategy profiles of four agents are all set to {1, 2, . . .,
10}. Now, we randomly make four decisions and compute their
usefulness degrees, as shown in Fig. 3(b).

B. Basic Decision-Making Model for DAG Structures

If an interaction structure N = 〈A,R〉 is a DAG, then we
have the following: ∀ai ∈ A, �ai

is fixed [16]. The basic idea
in our model is as follows: ∀ai ∈ A, if we want to decide the
set of available strategies for agent ai, we should decide the sets
of available strategies for ∀ai ∈ �ai

in advance. Thus, we can
obtain the joint distribution of strategies for all agents step by
step.

Therefore, our algorithm can be designed as follows: At
first, we restrict the available strategies of the agents whose
dependence agents are all decided or empty; such iteration will
be repeated until it cannot find any undecided agents whose

dependence ones are all decided or empty. Now, if all agents
in the system can be decided with definite strategies, then the
decision making is successful; otherwise, it can be noted that
there are cycles in the interaction structure.

Algorithm 1. Decision making of multiagent strategies for
directed acyclic interaction structure
• Input A = {a1, a2, . . . , an} and R;
• Input S = {S1, S2, . . . , Sn}; /∗ the initial strategies ∗/
• Creatstack (stack);
• For ∀ai ∈ A:

if �ai
= { }, push (ai, stack);

• A′ = { };
• While (!empty(stack)) do:

1) au = pop(stack);
2) A′ = A′ ∪ {au};
3) for agent ∀aj ∈ Ωau

do:
i) Restrict Sj according to cuj ;
ii) �aj

= �aj
− {au};

iii) if �aj
= { }, push (aj , stack);

• If A == A′, return (“There are no cycles”);
else return (“There are cycles”);

• Output Sai
∀ai ∈ A′.

Algorithm 1 is O(n∗e), where n denotes the number of
agents and e denotes the number of dependence relations.

Theorem 1: Let the interaction structure be N = 〈A,R〉.
If N is a DAG, then Algorithm 1 can make a unique decision,
i.e., the decided strategies for all agents are definite.

Proof: ∀ai ∈ A, the set of available strategies for ai in
the decision making is fully determined by the following three
factors:

1) the initial set of strategies for ai;
2) the set of social constraints using ai as object agent,

namely, Depai;
3) the set of available strategies for �ai

in the decision
making.

Obviously, the uniqueness of 1) can be satisfied. Now, the
core procedure of Algorithm 1 is the same as the one of the
Topology Sorting Algorithm [17]; hence, �ai

is unique and
the uniqueness of 2) and 3) can also be satisfied. Therefore,
Algorithm 1 can make a unique decision for a directed acyclic
structure. �

Lemma 4: In the multiagent strategies decided by
Algorithm 1, if the set of strategies for one agent is empty,
then the dependence relations using such agent as object are
unlawful.

Proof: From Definition 8, we have Lemma 4. �
Two graphs containing the same number of graph vertices

connected in the same way are considered isomorphic [18],
[19]; now, we present the definition of isomorphic multiagent
interaction structures, shown as follows.

Definition 14: Let there be two interaction structures; one is
G with the agent set Ag = {ag1, . . . , agn}, and the other is H
with the agent set Ah = {ah1, . . . , ahn}. G and H are said to
be isomorphic if, first, there is a bijection f such that interaction
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Fig. 4. Directed cyclic dependence structure.

relation 〈ai, aj〉 is in G iff 〈f(ai), f(aj)〉 is in H , and second,
the constraints taken by the interaction relations 〈ai, aj〉 and
〈f(ai), f(aj)〉 are the same.

Theorem 2: Assume a scenario in which two interaction
structures G and H satisfy the following: 1) G and H are
both DAGs; 2) G and H are isomorphic; and 3) ∀agi ∈ Ag

and its peer in H , namely, f(agi), the initial strategies of agi
and f(agi) are the same. Then, we can deduce that the decided
strategies of agi and f(agi) by using Algorithm 1 are the same.

Proof: From the definitions of conditional strategy and
decision making in the interaction structure, for agent a, it
is determined by its first-order dependence structure Depa.
Therefore, a’s final strategies in the restriction of decision
making is determined by the following: 1) the agents in Depa
(i.e., �a); 2) the strategies of �a; and 3) the constraints taken
by the interaction relations from ∀aj ∈ �a to a. Now, while
Algorithm 1 is used, agi and f(agi) have the same three factors
if G and H are isomorphic; thus, the decided strategies of agi
and f(agi) are the same. �

C. Extended Decision-Making Model for Interaction
Structures With Cycles

If there are any cycles in the interaction structures, then
there exist some agents whose �ai

cannot be decided. For
example, Fig. 4(a) is a directed cyclic structure, where a1 ∈
�a3

, a3 ∈ �a2
, and a2 ∈ �a1

. Therefore, we cannot make a
definite decision according to Algorithm 1.

There are many forms of cycles; among them, the simple cy-
cle is popular. A simple cycle is one with no repeated vertices in
the cycle. If there is more than one cycle, and none of them con-
tains a vertex of another, then the cycles are independent [20].

For the reason of decision-making certainty, we have the
following assumption, which assures that the decision with
maximum usefulness degree can be obtained.

Assumption 1: In this paper, if there are dependence cycles
in the interaction structures, the cycles are all simple and
independent from each other.

In a simple dependence cycle, if we want to compulsively
decide the strategies of an agent in the cycle ai, then we can
ignore the dependence relations of ai on other agents in the
cycle (now, ai is a “cycle-breaking point”). After an agent
is decided compulsively in a simple dependence cycle, other
agents within the cycle can be decided step by step according
to the basic model in Section III-B. Such a method can be seen

Fig. 5. Interaction structure including three groups.

in Algorithm 2. For example, in Fig. 4, if we first decide agent
a1, then we can ignore the constraint c21, as can be seen in
Fig. 4(b); if we first decide agent a2, then we can ignore the
constraint c32, as can be seen in Fig. 4(c); if we first decide
agent a3, then we can ignore the constraint c13, as can be seen
in Fig. 4(d).

Algorithm 2. Cycle breaking and decision making (A, a). /∗ A
is the set of agents within the cycle and a is the cycle-breaking
point. ∗/

• atemp = a;
• While a 
∈ Ωatemp:

∀aj ∈ Ωatemp:
if aj ∈ A /∗if aj is in the circle ∗/

{Restrict Sjaccording to the social constraint from
atemp to aj ;
atemp = aj ;}

• Compute the usefulness degree of decision for A.

In the interaction structures with cycles that satisfy
Assumption 1, the agents can be divided into three groups:
1) the agents whose strategies can be decided by Algorithm 1
(Group 1); 2) the agents in any simple cycle (Group 2); and
3) the agents that are not in any cycle but depend on some agents
in cycles (Group 3). For example, in Fig. 5, a1 is the agent of
Group 1; a2, a3, and a4 are the agents of Group 2; and a5 is the
agent of Group 3.

In our extended decision-making model for interaction struc-
tures with cycles, we use different methods to decide strategies
for the three groups of agents: 1) For the first agent group, we
can simply use Algorithm 1 to decide their available strategies;
2) for the second agent group, we can utilize the cycle-breaking
method of Algorithm 2 for each agent in the cycle and then
select the decision with the maximum usefulness degree; and
3) after the first and second agent groups are decided, then
the third agent group can be decided by using Algorithm 1.
The whole extended decision-making model can be shown as
Algorithm 3.

Algorithm 3. Decision making of multiagent strategies for
interaction structures with dependence cycles/∗ A denotes
the whole set of agents, A′ denotes the agents in Group 1,
A′′

i denotes the agents in cycle i, A∗ denotes the agents in
Group 3. ∗/
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• Calling Algorithm 1; /∗ After the execution of Algorithm
1, now, the set of remaining agents is (∪iA

′′
i ) ∪A∗ ∗/

• For each A′′
i :

{∀a ∈ A′′
i :

Cycle breaking and decision making (A′′
i , a);

/∗ Calling Algorithm 2 ∗/
Output the decided strategies with the maximum
usefulness degree;}

• Calling Algorithm 1 for A∗.

In Algorithm 3, the first and third parts are both O(n× e),
where n denotes the number of agents in the group and e
denotes the number of dependence relations in the group; the
second part is O(l ×m2), where l denotes the number of cycles
and m denotes the number of agents in a cycle. Therefore,
Algorithm 3 is O(l ×m2).

As said in the proof of Theorem 1, the set of available
strategies of an agent is determined by three factors. In
Algorithm 3, the agents in A′′

i and A∗ cannot satisfy the three
factors. Therefore, the decision-making result of Algorithm 3
is not unique, i.e., different executions of Algorithm 3 may
get different decisions. However, we can have the following
theorem.

Theorem 3: Let an interaction structure be N = 〈A,R〉. If
N has cycles and satisfies Assumption 1, then Algorithm 3 can
make the decision with the maximum usefulness degree.

Proof: In Algorithm 3, the agents in N can be divided
into three groups: 1) A′, the agents whose strategies can be
fully decided; 2) ∪iA

′′
i , the agents that are attributed to any

simple cycle; and 3) A∗, the set of agents that do not attribute to
any cycle but depend on some agents in the cycles. Obviously,
the available strategies of the agents in A′ are decided by
Algorithm 1; hence, the strategy restrictions endowed on A′

are unique. The available strategies of the agents in ∪iA
′′
i are

decided by the procedures in Algorithm 2, which can obtain
the strategy restriction with the maximum usefulness degree.
After the strategy restriction related to ∪iA

′′
i is fixed, then

the available strategies of the agents in A∗ are determined by
Algorithm 1; therefore, the strategy restrictions endowed on A∗

are unique. Therefore, the decision-making result for the whole
system has the maximum usefulness degree. �

Theorem 4: Assume that two interaction structures G and H
satisfy the following conditions: 1) G and H are both directed
graphs with cycles; 2) G and H are isomorphic; 3) the initial
strategy spaces for any two peer agents in G and H are the
same; and 4) for any cycle-breaking point in G, i.e., a, its
peer agent f(a) is also the cycle-breaking point in H while we
use the extended model and vice versa. Then, the following is
true: For each agent in G, namely, ai, and its peer agent in H ,
i.e., f(ai), the decided strategies of ai and f(ai) by using the
extended model are the same.

Proof: From the definitions of conditional strategy and
decision making in the interaction structure, agent a is decided
by its first-order dependence structure of agent Depa. There-
fore, a’s final strategies is decided by the following: 1) the
agents in Depa (i.e., �a); 2) the strategies of �a; and 3) the
constraints taken by the interaction relations from ∀aj ∈ �a

to a. Now, while the extended model is used and the cycle-
breaking points in G and H are fully peer to peer, ai and f(ai)
have the same three factors if G and H are isomorphic; hence,
the decided strategies of ai and f(ai) are the same. �

Example 5: Now, we give an example to demonstrate
Algorithm 3. Fig. 6(a) is an interaction structure with a cycle.
The initial set of strategies for each agent is {1, . . ., 100}. Now,
a1, a2, and a3 are attributed to Group 1; thus, they can be
decided by Algorithm 1. Agents a4, a5, and a6 form a cycle.
We can use the following three scenarios.

1) If we select a4 to break the cycle, the dependence relation
c64 is ignored, the decided strategies are as shown in
Fig. 6(c), and the usefulness degree of such decision is
USL = 0.53α+ 0.9β.

2) If we select a5 to break the cycle, the dependence relation
c45 is ignored, the decided strategies are as shown in
Fig. 6(d), and the usefulness degree of such decision is
USL = 0.67α+ 0.9β.

3) If we select a6 to break the cycle, the dependence
relation c56 is ignored, the decided strategies are as
shown in Fig. 6(e), now, only five dependence relations
(c12, c13, c67, c78, c68) can be satisfied, and the usefulness
degree of such decision is USL = 0.62α+ 0.5β.

From the results of the three scenarios, the decision in 2) has
the maximum usefulness degree. Therefore, we should adopt
such decision.

IV. CASE STUDY WITH A MULTIAGENT

CITATION NETWORK

A. Introduction to Multiagent Citation Networks

In multiagent systems, the operation of some agents may be
implemented by calling the operation results of other agents,
which can be denoted as citation networks where the link
between two nodes denotes that the agent associated with the
first node directly cites the operation result of the one associated
with the second node. A citation network is a typical interaction
structure that is a DAG.

Now, we propose that the agents that have no direct citation
links may also have indirect citation relations. Then, in a
citation structure, from which does an agent cite results? Thus,
we need to endow some citation rules among the agents in
citation networks, which can design a strategy profile for each
agent from which it can cite results.

Multiagent Citation Rules: By introducing the citation con-
cepts in [21], we design the citation rules of agents according
to the property of citation structure, shown as follows.

1) If there is a citation link from agent a to agent b, then a
can cite the operation result of b (Citation Rule 1).

2) Agent a can cite the operation results of its all-orders
domination agents (Citation Rule 2).

3) A direct citation link from one agent to another actually
rules out a citation in the other direction. Therefore, if
there is a citation link from agent a to agent b, then b
cannot cite the result of a (Citation Rule 3).



1114 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 6, NOVEMBER 2011

Fig. 6. Case demonstration for Algorithm 3. (a) Interaction structure and initial strategies. (b) Social constraints of dependence relations. (c) Strategy decision
result by selecting a4 to break the cycle. (d) Strategy decision result by selecting a5 to break the cycle. (e) Strategy decision result by selecting a6 to break the
cycle.

Fig. 7. Example for the citation network and operation citation relations.

4) An agent cannot cite the operation result of itself (Cita-
tion Rule 4).

5) Agent a cannot cite the results of agents in the all-orders
dependence structures of a (Citation Rule 5).

6) If two agents are independent of each other in the inter-
action structures, then they can cite each other (Citation
Rule 6).

Example 6: Fig. 7 shows an agent citation network; there-
fore, now, we can design some operation citation relations.

B. Strategies and Decision Making in Multiagent
Citation Networks

In citation networks, the strategies of a are the set of agents
from which a can cite operation results. For example, if Sa =
{a1, a2, a3}, then agent a can cite the operation results from
agents a1, a2, and a3.

Definition 15: In the environment of citation network
〈A,R〉, where A denotes the agents and R denotes the citation
links among agents, a useful decision is the one that restricts
the citation relations among agents to satisfy the requirements
of multiagent citation rules.

Obviously, to satisfy the requirements of citation rules ∀a ∈
A, the set of strategies of agent a should have the following
properties (decision laws).

1) Law 1: ∀a ∈ A,
∑

Ωa ⊆ Sa (Citation Rule 1 and 2).
2) Law 2: ∀a, b ∈ A, b ∈

∑
�a ⇒ b 
∈ Sa (Citation Rules 3

and 5).
3) Law 3: ∀a ∈ A, a 
∈ Sa (Citation Rule 4).
4) Law 4: ∀a, b ∈ A, a/� b ⇒ (a ∈ Sb ∧ b ∈ Sa) (Citation

Rule 6).
Now, according to the decision laws, we can design the

conditional strategy set of agent a ∈ A as

Sa|�a
= A− {a} −

∑
�a. (14)

Therefore, the decision of the whole system can be the joint
distribution of the conditional strategies of all agents which can
satisfy the requirements of citation rules, i.e., we have

SL=S(a1, a2, · · · an)=
n
∧
i
Sai|�ai

=
n
∧
i

(
A− {ai}−

∑
�ai

)
.

(15)

Theorem 5: The decision making of multiagent strategies
implemented by (14) and (15) is useful, and the final set of
strategies available to all agents can satisfy the citation rules
(i.e., can satisfy the decision laws).

Proof: Now, we prove that the decided strategies satisfy
the four decision laws.

1) ∀b ∈
∑

Ωa ⇒ b 
∈
∑

�a, we have b ∈ (Sa|�a
= A−

{a} −
∑

�a) according to (14). Therefore, in the



JIANG et al.: DECISION MAKING OF NETWORKED MULTIAGENT SYSTEMS 1115

Fig. 8. Example to demonstrate the conditional strategy and decision making
in citation networks.

decision results determined by (15), a can cite opera-
tion results from agent b∀b ∈

∑
Ωa, which then satisfies

Law 1.
2) For agent a ∈ A, if b is the all-orders dependence agents

of a, i.e., b ∈
∑

�a, then we have b 
∈ (Sa|�a
= A−

{a} −
∑

�a) according to (14). Thus, in the decision
results determined by (15), a cannot cite operation results
from b∀b ∈

∑
�a, which satisfies Law 2.

3) For agent a ∈ A, we have a 
∈ (Sa|�a
= A− {a} −∑

�a) according to (14). Therefore, in the decision re-
sults determined by (15), a cannot cite operation results
from itself, which satisfies Law 3.

4) ∀a, b ∈ A, a/� b ⇒ a 
∈
∑

�b ∧ b 
∈
∑

�a; therefore, b∈
(Sa|�a

=A−{a}−
∑

�a) ∧ a ∈ (Sb|�b
=A−{b}−

∑
�b)

is true. Thus, in the results decided by (15), a can cite
operation results from b and vice versa, which satisfies
Law 4.

�
Proposition 1: In the decision results determined by (14)

and (15), agents having structurally equivalent interactions have
the same set of strategies except for the citations between
themselves, i.e., a ≡ b ⇒ ((Sa|�a

− {b}) = (Sb|�b
− {a})).

Proof: a ≡ b ⇒ (
∑

�a =
∑

�b). According to (14),
Sa|�a

− {b} = A− {a} −
∑

�a − {b} and Sb|�b
− {a} =

A− {b} −
∑

�b − {a}. Therefore, we have Sa|�a
− {b} =

Sb|�b
− {a}. �

Example 7: We take the citation network in Fig. 8 as an
example. The decision-making result is

SL =S(a1, a2, a3, a4, a5)

=Sa1
∧ Sa2|a1

∧ Sa3|a1
∧ Sa4|a2,a3

∧ Sa5|a4

= {a2, a3, a4, a5}︸ ︷︷ ︸
Sa1

∧{a3, a4, a5}︸ ︷︷ ︸
Sa2

∧{a2, a4, a5}︸ ︷︷ ︸
Sa3

∧ {a5}︸︷︷︸
Sa4

∧ {}︸︷︷︸
Sa5

.

Obviously, the aforementioned SL for the citation network
in Fig. 8 is useful. Moreover, a2 ≡ a3; hence, we have Sa2 −
{a3} = Sa3 − {a2} = {a4, a5}.

C. Decision-Making Algorithm in Citation Networks

We use Algorithm 1 and (15) to make the strategy decision
in citation networks, shown as Algorithm 4.

Algorithm 4. Decision making of multiagent strategies in
citation networks
• Input: A = {a1, a2, . . . , an} and interaction relations R.
• ∀ai ∈ A: Sai = A;
• Creatstack (stack);
• ∀ai ∈ A: if Depai = { }, push(ai, stack);
• Int count = 0;
• While [!empty(stack)] do:

1) au = pop(stack); Sau = Sau − {au};
2) count++;
3) ∀ai ∈ Ωau:

i) Stemp = A− Sau;
ii) Saj = Saj − Stemp;
iii) Depaj = Depaj − {〈au, aj〉};
iv) If Depaj = { }, then push(aj , stack);

• If count 
= n, then report error
else output Sai ∀ai ∈ A.

Example 8: Three-dimensional citation cube. We use the
citation cube in Fig. 9 to demonstrate Algorithm 4. At first, we
decide the strategies of agents d and f that have no dependence
substructures. The progress of decision making is shown by
(ii)–(ix) in Fig. 9.

D. On the Adjustment and Scalability in Citation Networks

1) Adjustment for the Oscillation of Citation Links: Deci-
sion making should be adjusted as a choice for the interaction
oscillation regarding the history. In the operations of agent
systems, some new citation links may be added to the structure
and some old citation links may be deleted from the existing
structure. We do not need to decide the entire strategies from
the beginning, as that would be costly. Instead, we should adjust
the existing decided strategies locally.

Given that a citation network N = 〈A,R〉 and N is a DAG,
if an existing relation 〈au, av〉 is deleted from N , then the new
structure N ′ = 〈A,R′〉, R′ = R− {〈au, av〉}, is still a DAG.
However, if a new citation link is added to the citation network,
we need to justify whether there are any cycles in the structure.

While some citation links oscillate in the citation network,
we can adjust the decided strategies according to the following
adjustment law.

Adjustment Law:

1) Given an environment 〈A,R〉, au, av ∈ A, if a new ci-
tation link 〈au, av〉 is added to the citation network and
does not produce any cycles, then the set of strategies
∀ai ∈ ({av} ∪

∑
Ω′

av
) can be changed as follows:

∀ai ∈
(
{av} ∪

∑
Ω′

av

)
, S ′

ai
= Sai

− (A− Sau
) (16)

where
∑

Ω′
av

are the all-orders domination agents of av
in the new structure, Sai is the set of strategies of agent
ai in the old structure, and S ′

ai
is the set of strategies of

agent ai in the new structure.
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Fig. 9. Case demonstration for the decision making in citation networks.

Moreover, the strategies of {ai|∀ai ∈ (A− ({av} ∪∑
Ω′

av
))} do not need to be changed.

2) Given an environment 〈A,R〉, au, av ∈ A, if an existing
citation link 〈au, av〉 is deleted, then the set of strategies
∀ai ∈ ({av} ∪

∑
Ω′

av
) can be changed as follows:

∀ai ∈
(
{av} ∪

∑
Ω′

av

)
,

S ′
ai

= Sai
∪
(
{au} ∪

∑
�

′
au

−
∑

�
′
ai

)
(17)

where
∑

Ω′
av

,
∑

�
′
au

,
∑

�
′
ai

are the ones in the new
structure, Sai is the set of strategies of ai in the old
structure, and S ′

ai
is the set of strategies of agent ai in

the new structure.

Moreover, the strategies of {ai|∀ai ∈ (A− ({av} ∪∑
Ω′

av
))} need not be changed.

Theorem 6: Given an environment 〈A,R〉 and a decision SL
that is useful for the existing citation structure, the adjustment
law can obtain useful decision for the new citation structure.

Proof: The proof can be seen in the Appendix. �
Example 9: We can take the citation network and strategies

in Fig. 9 (ix) as an example to demonstrate our adjustment
law. Fig. 10 shows the adjustment for interaction relation
oscillation.

2) Scalability for the Growth of Citation Structures: The
growth of citation networks can be based on the dynamics
of interacting links that is motivated by the joining agents to
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Fig. 10. Case demonstration for the adjustment law: (a) 〈f, d〉 is added to
the citation structure; now, the strategies of agent d, b, c, h, g are adjusted.
(b) 〈d, h〉 is deleted from the citation structure; now, the strategies of agent
h and g are adjusted.

construct links (re)directing them toward selected existing
agents [21]. If the citation structure at time t is 〈At, Rt〉,
where At denotes the set of agents and Rt denotes the set of
agent citation links, and if the citation structure at time t+ i
is 〈At+i, Rt+i〉, where At+i denotes the set of agents and
Rt+i denotes the set of agent citation links, then the growth
of agent citation structure satisfies the following: At ⊆ At+i

and Rt ⊆ Rt+i. When the citation structure grows, we do not
need to make decisions by starting from scratch, which is costly.
Thus, we should expand the existing decided strategies locally.

Growth Law: Given an environment 〈A,R〉 and the exist-
ing decision SL, we let an agent a and some citation links
associated with it be added to the existing structure, the new
set of agents be A′, and the new citation structure be R′. The
growth of citation links should not produce any cycles in the
new citation network; now, we change the strategies of agents
according to the following laws.

1) ∀ai ∈
∑

�a, their strategies are changed as S ′
ai

= Sai
∪

{a}.
2) ∀ai ∈

∑
Ωa, their strategies are changed as S ′

ai
= Sai

−
{a} = Sai

.
3) ∀ai ∈ (A′ −

∑
Ωa −

∑
�a − {a}) ⇒ ai/� a, their strat-

egies are changed as S ′
ai

= Sai
∪ {a}.

4) For agent a, S ′
a = A′ − {a} −

∑
�a.

Theorem 7: Obviously, the four parts of the growing law are
all determined according to (14) and (15); thus, the growth law
can obtain useful decision results.

Example 10: We now take Fig. 9 (ix) as an example; let
a new agent z and two new citation links 〈z, g〉 and 〈h, z〉
be added to the structure. Now, we can change the decided
strategies of the system according to our growth law; the result

Fig. 11. Case demonstration for the growth law.

is shown in Fig. 11. Obviously, the final decided strategies can
satisfy the citation rules for the new citation structure; hence,
the decision is useful.

V. RELATED WORK

Our research is related to the decision making of multiagents,
where each agent should make decisions about which action to
perform to ensure a good joint action for the whole multiagent
group. Generally, related work can be categorized as follows.

1) Decision Making of Multiagents Based on Game Theory
and Economics [22]: While agents inhabit a shared environ-
ment, they negotiate with each other to decide their actions
[30]–[34]. To conduct negotiations, they always adopt game
theory or other economics techniques, such as bargaining, auc-
tion, contracting, etc. The negotiation protocols and decision-
making procedures are always focused. The related works
include two aspects: cooperative agents and self-interested
agents.

In the decision making of cooperative agents, the agents
need to cooperate with each other to solve a problem or to
reach a common goal. For example, Moehlman et al. [23]
use decentralized negotiation to solve the distributed planning
problem; Lander and Lesser [24] employ multistage negotiation
as a means to conduct distributed searches among agents; Pelta
and Yager [25] consider a problem of mediated group decision
making where a number of agents provide a preference function
over a set of alternatives and present an optimization approach
for the decision strategies in mediated multiagent negotiations.
Another typical example for the decision making of cooperative
multiagents is the one in robot soccer, where the agents share a
common decision-making criterion and take into account what
their partners are able to do [26]. Therefore, in cooperative
agents, they always negotiate to reach an agreement, and the
decision is made according to the maximum utility of the
system.

In the decision making of self-interested agents, the agents try
to maximize payoff without concern of the global good; thus,
such a self-interested agent will choose the best negotiation
strategy for itself [27]. Game theory is a branch of economics
that is always used to study interactions between self-interested
agents [3]. Game theory may be used to analyze the problems
of how interaction strategies can be designed to maximize the
welfare of an agent in a multiagent encounter and how protocols
or mechanisms can be designed that have certain desirable
properties [2]. An agent’s equilibrium strategy depends on the
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information that it has about the preferences and behaviors
of other agents. The decision making of self-interested agents
is typically seen in the market or electronic commerce [28].
For example, Lomuscio et al. [29] present a classification
scheme for the negotiation of self-interested agents in electronic
commerce.

2) Decision Making of Networked Agents: With large-scale
and networked application environments, distributed decision
making for the coordination of networked agents has received
much attention in recent years. In the related works on decision
making of networked agents, a network of agents with initially
different opinions can reach a collective decision and hence
take action in a distributed manner [11]. Saber and Murray
provide convergence, performance, and robustness analyses of
an agreement protocol for a network of integrator agents with
directed information flow and (perhaps) switching topology,
which mainly relies on the tools of algebraic graph theory and
matrix theory [10]. Roy et al. [11] introduce a quasi-linear
stochastic distributed protocol that can be used by a network
of sensing agents to reach a collective action agreement; more-
over, they put forth the viewpoint that it is useful to consider
the information-fusion and decision-making tasks of networks
with sensing agents jointly, as a decentralized stabilization
or agreement problem. Gal et al. [34] describe several new
decision-making models that represent, learn, and adapt to
various social attributes that influence people’s decision making
in open mixed networks including agents and people.

3) Modeling the Interdependence Among Multiagents: The
dependence among multiagents can be modeled by dependence
networks. The dependence network can be used for the study of
emerging social structures, such as groups and collectives, and
may form a knowledge base for managing complexity in both
competitive and organizational or other cooperative contexts
[12]. Sichman and Conte [12] model multiagent interdepen-
dences among different agents’ goals and actions and construct
a tool for predicting and simulating their emergence. Wong and
Butz [13] propose an automated process for constructing the
combined dependence structure of a multiagent probabilistic
network, where the dependence structure is a graphical rep-
resentation of the conditional independencies that are known
to hold in the problem domain. Generally, the related works
on the interdependence among multiagents mainly focus on
the knowledge representation and reasoning dependence among
multiagents.

Summarization: The main concerns of related works can be
summarized as follows: 1) In the previous decision-making
works of multiagents based on game theory and economics,
they mainly focus on negotiation protocols and decision-
making procedures; 2) in the previous works on the decision
making of networked agents, they mainly concern the agree-
ment problems in which all agents in the network must achieve
the same opinion and on the connection between the network
topology and the performance of the agreement protocol; and
3) in the previous works on the interdependence among multi-
agents, they mainly focus on the knowledge representation and
reasoning dependence among multiagents.

Therefore, previous works seldom take into account the
interaction structures of agents. Aiming to solve the structured

interaction collision problem of networked multiagents, this
paper investigates the interaction structure-oriented decision
making.

VI. CONCLUSION

Networked structures are very popular in the large-scale
multiagent systems. We have presented a novel interaction-
structure-oriented decision model of networked multiagent
strategies, which can satisfy the requirement of interaction
structure among agents. The presented model can restrict the
strategies of all agents to match their interaction positions. The
presented decision-making model contains two parts: One is the
basic model for the directed acyclic interaction structure and the
other is the extended model for the directed interaction structure
with cycles. We theoretically prove that the former can produce
the unique outcome, which is to minimize the conflicts among
agents, and that the latter can produce the maximum utility.
Moreover, the model can produce the same resulted strategies
as for isomorphic structures.

Finally, we adopted a multiagent citation network to make
a case study. Through the case study, we can then see that our
model can minimize collisions for citation relations. In our case
study, citation networks are considered DAGs. However, there
are also some other special cases of citation structures that are
not DAGs, such as mutually citation companion agents and
cyclic citation structures occurred in some agents; therefore,
we will solve the strategy decision in cyclic citation structures
by using our extended model. Moreover, in the future, we will
focus on the application of our decision-making model in more
complex interaction structures, such as hypergraph, complex
social networks, etc.

APPENDIX

PROOF OF THEOREM 6

Obviously, the adjustment law can result in a useful decision
only if we can prove that the adjustment law satisfies the
requirements of the decision laws in Section IV-B.

1) Law 1: ∀a ∈ A,
∑

Ωa ⊆ Sa.
a) ∀ai ∈ (A− {au, av} −

∑
Ω′

av
)

i) ∀aj ∈ (A− {au, av} −
∑

Ω′
av
), if aj ∈

∑
Ωai,

then aj ∈
∑

Ω′
ai

and aj ∈ Sai
. Now, S ′

ai
= Sai

;
hence, aj ∈ S ′

ai
.

ii) For au, if au ∈
∑

Ωai
, then au ∈

∑
Ω′

ai
and au ∈

Sai
. Now, S ′

ai
= Sai

; thus, au ∈ S ′
ai

.
iii) For∀aj ∈ ({av} ∪

∑
Ω′

av
), if aj ∈

∑
Ωai

, then
aj ∈ Sai

.
• When a new citation link 〈au, av〉 is added to

the citation structure, the following occurs.
aj ∈ Ω′

ai
and S ′

ai
= Sai

; thus, we have aj ∈
S ′
ai

.
• When an old citation link 〈au, av〉 is deleted

from the citation structure, the following
occurs.

If aj ∈
∑

Ω′
ai

, S ′
ai

= Sai
; therefore, we

have aj ∈ S ′
ai

. If aj 
∈
∑

Ω′
ai

, then aj/� ai;
therefore, we also have aj ∈ S ′

ai
.
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b) For agent au
i) ∀aj ∈ (A− {au, av} −

∑
Ω′

av
), if aj ∈

∑
Ωau

,
then aj ∈

∑
Ω′

au
and aj ∈ Sau

. Now, S ′
au

= Sau
;

thus, aj ∈ S ′
au

.
ii) ∀aj ∈ ({av} ∪

∑
Ω′

av
), if aj ∈

∑
Ωau

, then aj ∈
Sau

.
• When a new citation link 〈au, av〉 is added to

the citation structure, the following occurs.
Now that aj ∈

∑
Ω′

au
and S ′

au
= Sau

is
achieved, we have aj ∈ S ′

au
.

• When an old citation link 〈au, av〉 is deleted
from the citation structure, the following
occurs.

If aj ∈
∑

Ω′
au

, then S ′
au

= Sau
; hence, we

have aj ∈ S ′
au

. If aj 
∈
∑

Ω′
au

, then aj/� au;
therefore, we have aj ∈ S ′

au
.

c) ∀ai ∈ ({av} ∪
∑

Ω′
av
)

i) ∀aj ∈ (A−
∑

Ω′
av
), aj 
∈

∑
Ω′

ai
; hence, we do

not need to address them.
ii) ∀aj ∈

∑
Ω′

av
, if ∀aj ∈

∑
Ωai

, then ∀aj ∈
∑

Ω′
ai

,
aj ∈ Sai

.
• When a new citation link 〈au, av〉 is added to

the citation structure, the following occurs.
Now, S ′

ai
= Sai

− (A− Sau
) and aj ∈

Sau
; hence, aj ∈ S ′

ai
.

• When an old citation link 〈au, av〉 is deleted
from the citation structure, the following is
possible: S ′

ai
⊇ Sai

; thus, we have aj ∈ S ′
ai

.

2) Law 2: ∀a, b ∈ A, b ∈
∑

�a ⇒ b 
∈ Sa.

a) ∀ai ∈ (A− {av} −
∑

Ω′
av
)

i) ∀aj ∈ (A− {av} −
∑

Ω′
av
), if aj ∈

∑
�ai

, then
aj 
∈ Sai

. Now, aj ∈
∑

�
′
ai

and S ′
ai

= Sai
; there-

fore, we have aj 
∈ S ′
ai

.
ii) ∀aj ∈ ({av} ∪

∑
Ω′

av
), aj 
∈

∑
�ai

; hence, we
need not address them.

b) ∀ai ∈ ({av} ∪
∑

Ω′
av
)

i) ∀aj ∈ A, if aj ∈
∑

�ai
, then aj 
∈ Sai

.
• When a new citation link 〈au, av〉 is added

to the citation structure, the following
happens.

Now, aj ∈
∑

�
′
ai

, S ′
ai

= Sai
− (A− Sau

),
and aj 
∈ Sai

; hence, we have aj 
∈ S ′
ai

.
• When an existing citation link 〈au, av〉 is

deleted from the citation structure, the follow-
ing occurs.

If aj 
∈
∑

�
′
ai

, we need not address them.
If aj ∈

∑
�

′
ai

, now, S ′
ai

= Sai
∪ ({au} ∪∑

�
′
au

−
∑

�
′
ai
) and aj 
∈ Sai

; thus, we have
aj 
∈ S ′

ai
.

3) Law 3: ∀a ∈ A, a 
∈ Sa.

a) ∀ai ∈ (A− {av} −
∑

Ω′
av
), ai 
∈ Sai

. Now, S ′
ai

=
Sai

; hence, ai 
∈ S ′
ai

.
b) ∀ai ∈ ({av} ∪

∑
Ω′

av
), ai 
∈ Sai

.
i) When a new citation link 〈au, av〉 is added to the

interaction structure, the following occurs.

Now, S ′
ai

= Sai
− (A− Sau

), ai 
∈ Sai
; hence,

ai 
∈ S ′
ai

.
ii) When an old citation link 〈au, av〉 is deleted from

the citation structure, the following happens.
Now, S ′

ai
= Sai

∪ ({au} ∪
∑

�
′
au

−
∑

�
′
ai
),

ai 
∈ Sai
, ai 
∈

∑
�

′
au

; therefore, ai 
∈ S ′
ai

.

4) Law 4: ∀a, b ∈ A, a/� b ⇒ (a ∈ Sb ∧ b ∈ Sa).

1) ∀ai ∈ (A− {av} −
∑

Ω′
av
)

i) ∀aj ∈ (A− {av} −
∑

Ω′
av
), if ai/� aj is in the old

citation structure, then ai ∈ Saj
∧ aj ∈ Sai

is true.
Now, it is true that ai/� aj is in the new citation
structure and S ′

aj
= Saj

∧ S ′
ai

= Sai
; therefore, we

have ai ∈ S ′
aj

∧ aj ∈ S ′
ai

.
ii) ∀aj ∈ ({av} ∪

∑
Ω′

av
), if ai/� aj is in the old cita-

tion structure, then ai ∈ Saj
∧ aj ∈ Sai

is true.
• When a new citation link 〈au, av〉 is added

to the citation structure, the following
happens.

Now, S ′
aj

= Sai
⇒ aj ∈ S ′

ai
and S ′

aj
=

Saj
− (A− Sau

). If ai/� aj is in the new cita-
tion structure, then ai/� au, so ai ∈ Sau

. Thus,
we have ai ∈ S ′

aj
.

• When an existing citation link 〈au, av〉 is
deleted from the citation structure, the follow-
ing takes place.

If ai/� aj is in the old citation struc-
ture, then ai/� aj is also true in the new
citation structure. Now, S ′

ai
= Sai

⇒ aj ∈
S ′
ai

. S ′
aj

= Saj
∪ ({au} ∪

∑
�

′
au

−
∑

�
′
aj
),

ai/� aj ⇒ ai 
∈
∑

�
′
aj

, and ai ∈ Saj
; thus, we

have ai ∈ S ′
aj

.
2) ∀ai ∈ ({av} ∪

∑
Ω′

av
)

i) ∀aj ∈ (A− {au, av} −
∑

Ω′
av
)

• When a new citation link 〈au, av〉 is added to
the citation structure, the following process is
made possible.

If ai/� aj is in the old citation struc-
ture, then we have ai ∈ Saj

∧ aj ∈ Sai
. We

have S ′
aj

= Saj
⇒ ai ∈ S ′

aj
. Now, if ai/� aj

is in the new citation structure, then ai/�
aj ⇒ aj 
∈

∑
�

′
ai

and S ′
ai

= Sai
∪ ({au} ∪∑

�
′
au

−
∑

�
′
ai
). Consequently, we have

aj ∈ S ′
ai

.
If ai ∈

∑
Ωaj

, then ai/� aj is not true in the
new citation structure; therefore, there is no
need for us to address them.

• When an existing citation link 〈au, av〉 is
deleted from the citation structure, the follow-
ing occurs.

If ai/� aj or ai ∈
∑

Ωaj
is in the old ci-

tation structure, then we have ai ∈ Saj
. We

have S ′
aj

= Saj
⇒ ai ∈ S ′

aj
. Now, if ai/� aj is

in the new citation structure, then ai/� aj ⇒
aj 
∈

∑
�

′
ai

∧ aj ∈
∑

�
′
au

and S ′
ai

= Sai
∪

({au} ∪
∑

�
′
au

−
∑

�
′
ai
). Thus, we have

aj ∈ S ′
ai

.



1120 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 6, NOVEMBER 2011

ii) For agent au
• When a new citation link 〈au, av〉 is added

to the citation structure, the following
happens.

Obviously, ai/� aj is not true in the new
structures; hence, we need not address them.

• When an existing citation link 〈au, av〉 is
deleted from the citation structure, the follow-
ing occurs.

If ai/� au or ai ∈
∑

Ωau
is in the old ci-

tation structure, then we have ai ∈ Sau
. We

have S ′
au

= Sau
⇒ ai ∈ S ′

au
. Now, if ai/� au

is in the new citation structure, then ai/�
au ⇒ au 
∈

∑
�

′
ai

and S ′
ai

= Sai
∪ ({au} ∪∑

�
′
au

−
∑

�
′
ai
). Hence, we have au ∈ S ′

ai
.

iii) ∀aj ∈ ({av} ∪
∑

Ω′
av
)

• When a new citation link 〈au, av〉 is added
to the citation structure, the following takes
place.

As the citation structure between ai and
aj is not changed, if ai/� au is in the new
citation structure, then ai/� au is also true
in the old citation structure and ai ∈ Saj

∧
aj ∈ Sai

. Now, S ′
ai

= Sai
− (A− Sau

)S ′
aj

=
Saj

− (A− Sau
), ai 
∈ (A− Sau

), and aj 
∈
(A− Sau

); thus, we have ai ∈ S ′
aj

∧ aj ∈
S ′
ai

.
• When an existing citation link 〈au, av〉 is

deleted from the citation structure, the follow-
ing scenario occurs.

Since the citation structure between ai and
aj is not changed and if ai/� au is in the new
citation structure, then ai/� au is also true in the
old citation structure and ai ∈ Saj

∧ aj ∈ Sai
.

Now, S ′
ai

⊇ Sai
and S ′

aj
⊇ Saj

; then, we have
ai ∈ S ′

aj
∧ aj ∈ S ′

ai
.

�
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